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1 INTRODUCTION

Given a homotopy equivalence f : M → N , we have induced isomorphism of fundamental groups ϕ : Γ→ θ and
the commutative diagram

Hn Hn

M = Γ\Hn θ\Hn = N

f̃

ϕ−equivariant
p p

f

We want to talk about Gromov’s proof of Mostow rigidity Theorem. The only similarity it has with Thurston’s
proof is that both use Boundary maps.

1.1 Steps of the proof:

1. f̃ is a pseudo isometry i.e.

∃a, b such that a−1d(x, y)− b ≤ d(f̃(x), f̃(y)) ≤ ad(x, y)

2. g pseudo isometry ; continuous g+ : Sn−1∞ → Sn−1∞ s.t. f̃+ is ϕ−equivariant.

3. If v0, v1, . . . , vn ∈ Sn−1∞ span a geodesic n−simplex of maximal volume then so do f̃+(v0), . . . , f̃+(vn).

4. f̃+ = h+ for some isometry h : Hn → Hn. ; ϕ−equiv. isometry h of Hn ; h : M → N .

Having already proved steps 1 and 2 in last lectures, we will start with proving step 3. However we will need to
build some machinery before we proceed.

2 GROMOV NORM

we introduce a homological invariant of a manifold known as Gromov’s norm. Gromov’s norm of hyperbolic
manifolds will be seen to be proportional to the volume of the manifold. The first striking consequence of this
result is that the volume of a hyperbolic manifold is a topological invariant.

Intuitively, Gromov’s norm measures the efficiency with which multiples of a homology class can be
represented by simplices. A complicated homology class needs many simplices.

Definition 2.1 (Gromov Norm). Consider the homomorphism

i∗ : H2(S, ∂S;Z)→ H2(S, ∂S;R)

1



3 STRAIGHTENING CHAINS Subhadip Chowdhury

induced by inclusion map, and by abuse of notation, let [S] denote the image of the fundamental class. Let
C =

∑
i riσi represent [S], ri ∈ R. Denote

‖C‖ =
∑
i

|ri| and the Simplicial Volume ‖S‖ := ‖[S]‖ = inf
C
‖C‖

Note 2.2. Note that using ‖.‖ one can define a seminorm on Hk(S).

2.1 Some properties of Gromov Norm

Proposition 2.3. f : X → Y continuous and α ∈ Hk(X). Then

‖f∗α‖ = inf
z∈Ck(Y )
[z]=f∗α

|z| ≤ inf
w∈Ck(X)
[w]=α

|f∗w| ≤ inf
w∈Ck(X)
[w]=α

|w| ≤ ‖α‖

since f ◦ σ1 and f ◦ σ2 may have same image.

Corollary 2.4. M and N are homotopy equivalent =⇒ ‖M‖ = ‖N‖.

Proposition 2.5.

f : M → N, deg f = d; z = [M ], f∗z = d[N ] =⇒ |d|‖N‖ ≤ ‖f∗z‖ ≤ ‖z‖; d.‖N‖ ≤ ‖M‖

Corollary 2.6.

f : M →M,deg f = d > 1 =⇒ ‖M‖ = 0 =⇒ ‖Sn‖ = 0,∀n ≥ 1 =⇒ ‖α‖ = 0, ∀α ∈ H1(X)

Note that ‖[S0]‖ = 2. We will prove that ‖Hyperbolic Manifold‖ > 0.

Proposition 2.7.
f : M → N is a covering map, deg f = d =⇒ d.‖N‖ = ‖M‖

w =
∑

ciσi = [N ] ;
∑

dciσi = [M ] =⇒ ‖M‖ ≤ d‖N‖

Mostow Rigidity tells us that homotopy equivalent hyperbolic manifolds are isometric, so the geometric
invariants (volume, diameter, injectivity radius) are somewhere encoded within the topology. More specifically,
for any geometric invariant, there must be a topological invariant so that one can determine the geometric
invariant by knowing the topological invariant. The following theorem tells us that the simplicial volume is the
topological invariant corresponding to volume.

Theorem 2.8 (Gromov). Fix n ≥ 2. Then there exists vn > 0 such that for every closed hyperbolic manifold M

‖M‖ =
V ol(M)

vn

In fact, vn is the maximum volume of a geodesic n−simplex in Hn.

3 STRAIGHTENING CHAINS

As we will now see, it is enough to take infimum over singular chains with geodesic simplices to calculate the
Gromov norm.
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Definition 3.1. Let M be a hyperbolic m−manifold, σ : ∆n →M be a singular n−simplex. Define straightening
σg of σ as follows. First lift σ to a map from ∆n → Hm, denote it by σ̃.

Let v0, . . . , vn denote the vertices of ∆n. Consider the hyperboloid model

Hm = {xm+1 > 0 : x21 + . . . x2m − x2m+1 = −1}

For v =
∑

i tivi ∈ ∆n (barycentric coordinates), define

σ̃g(v) =

∑
tiσ̃(vi)

−‖
∑
tiσ̃(vi)‖

and σg = p ◦ σ̃g. Intuitively, it is the projection of the convex hull of {v0, . . . , vn}.
Define

str : C∗(M)→ C∗(M)

by setting str(σ) = σg and extending by linearity. By composing a linear homotopy in Rm+1 with radial
projection to the hyperboloid, we see that there is a chain homotopy between str and Id. Thus ‖str(α)‖ ≤ ‖α‖.

Lemma 3.2. vk = supV ol(σ) over all geodesic simplices σ : ∆k → Hn is finite for k 6= 1.

Proof. It is enough to consider geodesic simplices with vertices on boundary (ideal simplex). Clearly, v2 = π.
Consider any ideal k−simplex σ in Hn. Arrange σ so that one of its vertices is ∞ in upper half space model.
So σ looks like a triangular chimney lying above a (k − 1) face σ0 of σ. For x ∈ τ = pr(σ0) ⊆ En−1, let h(x)
denote the Euclidean height of σ0 above x. Then volume of σ is

v(σ) =

∫
τ

∫ ∞
h

t−kdtdEuk−1

Then integrating we get

(k − 1)v(σ) =

∫
τ
h−(k−1)dEuk−1

The volume of σ0 is obtained by a similar integral where dEuk−1 is replaced by Euclidean volume element of σ,
which is ≥ dEuk−1. Thus

(k − 1)v(σ) < v(σ0) ≤ vk−1

Haagerup-Munkholm proved that vk is the volume of a regular ideal simplex. Milnor gave an asymptotic
formula for vn, assuming this result to be true. But we don’t need them.

Corollary 3.3. M closed hyperbolic n−manifold. Let z =
∑
ciσi be a straight cochain representing [M ]. Let

Ω ∈ Hn(M) be the volume form. Then

V ol(M) =
〈
Ω, [M ]

〉
=
∑

ciV ol(σi) ≤
∑

civn ≤ vn.‖z‖ ⇒ ‖M‖ ≥
V ol(M)

vn

Thus we have proved one direction of Gromov’s theorem.

3.1 Application to Hyperbolic surface

Theorem 3.4. Let S be a compact orientable surface with χ(S) < 0, possibly with boundary. Then

‖S‖ = −2χ(S)

Proof. We know ‖S‖ ≥ −2χ(S) from above theorem.
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Lemma 3.5. Let S be an orientable surface with p boundary components. If p > 1, then for any integer m > 1
with (m, p− 1) = 1, there exists a m−fold cyclic cover Sm with p boundary components, each of which maps to
the corresponding components of ∂S by a m−fold covering.

Let χ(S) = 2−2g−p. The surface S admits a triangulation with one vertex on each boundary component and
no other vertex ; 4g+ 3p− 4 triangles ; a m−fold cover with χ(Sm) = 2m− 2gm−mp and p+m(4g+ 2p− 4)

triangles ; ‖S‖ = 1
m‖Sm‖ ≤ lim

m→∞
p+m(4g+2p−4)

m = −2χ(S)

Figure 1: Example in case of g = 1, p = 2

4 REVERSE INEQUALITY IN GROMOV’S THEOREM

To prove the opposite inequality we need an explicit construction of a cycle representing [M ] and of total
variation close to V ol(M)/vn. The proof is easier to understand when using a modified homology which is a
smoothing of singular homology. So we give an equivalent definition of Gromov norm, which is technically easier
to work with.

4.1 Smooth Homology

Instead of continuous maps from the standard k−simplex, the chains of this modified homology are measures
compactly supported on the space C1(∆k,M) =: C1

k . More precisely, a k−chain µ is a signed Borel measure
on C1(∆k,M) with bounded total variation and supp(µ) is compact. Recall that any measure space (X,µ)
admits a canonical splitting (X+, µ+), (X−, µ−) such that X+ ∩X− = ∅ and µ = µ+ − µ− where µ+ and µ− are
nonnegative measures. Then the total variation of µ is given by

‖µ‖v =

∫
X+

dµ+ +

∫
X−

dµ−

Let Ck(M) denote corresponding set of k−chains. the natural face inclusion ηi : ∆k−1 → ∆k induce boundary
maps in the following way. The map

η∗i : C1
k → C1

k−1

pushes forward to
ξi : Ck(M)→ Ck−1(M) µ 7→ ξi(µ) = (η∗i )∗µ

The boundary map is defined by dk =
∑

(−1)iξi.
We claim that the natural inclusion i : C∗(M)→ C∗(M) which sends σ to δσ is a chain map. Observe that

on one hand

i(∂σ) =

k∑
j=0

(−1)jδσj
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where σj is the j−th side of σ. On the other hand,

ξj(i(σ))(A) = δσj (A)

for all Borel subsets A of C1
k−1. So d(i(σ)) =

∑k
j=0(−1)jδσj .

Thus the inclusion map descends to a map between homology groups and in fact,

i∗ : (Hn(C∗(M)), ‖.‖)→ (Hn(C∗(M)), ‖.‖v)

is an isometric isomorphism. Note that integration of a k−form over an element of Ck(M) can be similarly
defined via a deRham pairing.

4.2 Smearing Cocycle

Now we come to the explicit construction of the cycle mentioned above. We have a map of principal K bundles,
where K is a maximal compact subgroup of Isom+(Hn)

K K

Isom+(Hn) Γ\Isom+(Hn) = D(M)

Hn Γ\Hn = M
p

and the horizontal maps are principal Γ bundles. As a topological space Isom+(Hn) = K ×Hn and the Haar
measure h0 on Isom+(Hn) is the product of the one on K and the volume form ΩHn . Since h0 is left invariant
and Isom+(Hn) → D(M) is a locally trivial Γ-bundle, there is a unique measure hM on D(M) such that
Isom+(Hn)→ D(M) is locally measure preserving. Since, locally, hM is the product of the Haar measure on K
and the volume form ΩM , one has

hM (D(M)) = V (M)

One now defines a function
smear : C1(∆k,Hn)→ Ck(M)

as follows. Given σ : ∆k → Hn, there is a continuous map

Ψ : D(M)→ C1
k(M)

given by
Ψ(Γg) = p ◦ g ◦ σ, g ∈ Isom+(Hn)

Definition 4.1. We define
smear(σ) = Ψ∗(hM ) ∈ Ck(M)

The main property of smear(σ) that we are interested in is

Lemma 4.2.
‖smear(σ)‖v = vol(M)

if σ ∈ C1
n(Hn).
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