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Scissors Congruence
Two polygons P and Q are called Scissors Congruent in the plane if there
exist finite sets of polygons {P1, P2, . . . , Pm} and {Q1, Q2, . . . , Qm} such
that the polygons in each respective set intersect with each other only on

the boundaries,
m⋃
i=1

Pi = P and
m⋃
i=1

Qi = Q and Pi is congruent to Qi for

each i ∈ {1, 2, . . . ,m}.

Theorem (Wallace-Bolyai-Gerwien Theorem)
Two polygons are Scissors Congruent if and only if they have the same
area.

Proof.
LINK
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Hilbert’s 3rd Problem

Hilbert (1900)
given any two tetrahedra T1 and T2 with equal base area and equal height
(and therefore equal volume), is it always possible to find a finite number
of tetrahedra, so that when these tetrahedra are glued in some way to T1

and also glued to T2, the resulting polyhedra are scissors congruent?

Question (Reformulation)
Is it true that any two polyhedra of the same volume are scissors congru-
ent?

Answer.
No. (Max Dehn, 1900)
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Dehn Invariant

Definition
Consider the group R/πQ with operation + and identity 0. We want to
focus on V = R⊗R/πQ. The Dehn invariant of a polyhedron P is defined
as

D(P ) =
∑

length(e)⊗ [θ(e)] ∈ V

where θ(e) is the interior dihedral angle at the edge e and the sum is over
all edges e of P .

Theorem
If P and Q are scissors congruent, then vol(P ) = vol(Q) and D(P ) =
D(Q).
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Answering Hilbert’s question

Claim
A cube C and a tetrahedron T of unit volume are not Scissors Congruent.

Proof.
For a tetrahedron of volume 1, the length of each edge is 721/3, and the
measure of each angle is arccos(1/3). Thus

D(T ) =

6∑
i=1

721/3 ⊗ [arccos(1/3)].

But arccos(1/3) 6= Q. So D(T ) 6= 0.

I Are volume and Dehn invariant sufficient to classify polytopes up to
scissors congruence?

I What about other dimensions?
I What about other geometries, H3, S3 etc.?
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Definition

P = the set of formal sums of all polyhedra with following group structure,
I nP +mP = (n+m)P

I P = P1 + P2 if P1 and P2 intersect only on edges or faces, and
P = P1 ∪ P2.

I P = Q if P is congruent to Q.
Observe that, having [P ] = [Q] in P means that there exists a polyhedron
A such that P ∪A is scissors congruent to Q∪A and P and A (resp. Q and
A) only intersect on their faces. Two such polyhedra are said to be stably
scissors congruent which doesn’t immediately imply that they are scissors
congruent.

Theorem (Zylev)
For two polyhedra P and Q in E3, P is Scissors Congruent to Q if and
only if P is stably Scissors Congruent to Q.

6



Scissors Congruence Dehn Invariant Scissors Congruence Group Sydler’s Theorem Generalizations

Prisms

Lemma
Two prisms P and Q are Scissors Congruent if and only if they have the
same volume.

Theorem
All prisms have zero Dehn Invariant.

Proof.
Dihedral angles of orthogonal prisms are π/2.

Let P/C = the group of formal sums of all polyhedra modulo formal sums
of prisms. This means that if you have a polyhedron P and a formal sum of
prisms Q, such that P and Q do not intersect except on edges or faces, then
P is equivalent to P ∪Q in P/C.
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Proposition
There exists a function δ : P/C → R⊗R/πQ such that δ ◦ j(P ) = D(P ).
That is, the following diagram commutes.

P R⊗ R/πQ

P/C

D

j δ

Theorem (Sydler)
If two polyhedra P and Q have the same volume and the same Dehn
Invariant, then P and Q are scissors congruent.

Proof.
Assume δ is injective for now. =⇒ [P ] = [Q] ∈ P/C
=⇒ ∃ prisms R and S s.t. R only intersects P on faces, S only intersects
Q on faces, and [P ∪R] = [Q ∪ S] ∈ P.
=⇒ P ∪R and Q ∪ S have the same volume.
=⇒ vol(R) = vol(S).
But [R] = [S]. So [P ] = [Q] ∈ P.
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Why is δ injective?

Theorem
Let φ be a homomorphism φ : R→ P/C such that
1. φ(a+ b) = φ(a) + φ(b)

2. φ(na) = nφ(a) for n ∈ Z
3. φ(π) = 0

4. [T ] =
6∑
i=1

length(ei)φ(θi) ∈ P/C

We follow the construction of Zakharevich for φ. Suppose ∃ h : (0, 1) →
P/C s.t.

[T (a, b)] = h(a) + h(b)− h(a, b) and ah(a) + bh(b) = 0 if a+ b = 1

Then
φ(α) = tan(α) · h(sin2(α))

where (nπ)/2 = 0. We claim that such a function exists.
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Let D(X) = Ker(∆ : P(X)→ R⊗ R/πQ). Then
1. Conjecture: vol : D(H3)→ R and D(S3)→ R are injective.
2. Theorem: Then have countable image. in fact they are Q vactor space

of countable dimension.
3. Higher dimension.
4. Mixed Dimension.

10


	Scissors Congruence
	Dehn Invariant
	Scissors Congruence Group
	Sydler's Theorem
	Generalizations

