Techniques Grading in an IBL-style Intro to Proofs Course

Rationale - Implementation - Conclusions

Subhadip Chowdhury

March 3, 2022

College of Wooster

The "Why?" and the "What?"

PRIMARY OBJECTIVES OF AN INTRO TO PROOF CLASS

What it isn't:

What it is:

What it isn't:

- \cdot Memorize the precise definition or statement of theorem
- Know how to solve a particular class of problems using a standard "trick".

What it is:

What it isn't:

- \cdot Memorize the precise definition or statement of theorem
- Know how to solve a particular class of problems using a standard "trick".

What it is:

- Learn how to think like a mathematician i.e. 'how to start'.
- Learn how to communicate Mathematics using the correct vocabulary.
- Realize that 'solving a problem' is not the same as 'understanding the solution of a problem'.
- Learn how to persevere with a difficult question, even when no goal might be immediately within your sights.

- A Hybrid of Standard- and Specification-Based (and some other alternate) Grading methods
- Term coined by Dr. Andrew A. Cooper from UPenn in PRIMUS, 2020.
- Learning objectives are not an exhaustive list of content instead, a list of broad techniques and themes.

- A Hybrid of Standard- and Specification-Based (and some other alternate) Grading methods
- Term coined by Dr. Andrew A. Cooper from UPenn in PRIMUS, 2020.
- Learning objectives are not an exhaustive list of content instead, a list of broad techniques and themes.
- \cdot Proper choice of techniques \rightarrow
 - gives big picture view of the subject
 - allows a student to demonstrate mastery without attaching particular problems to a standard

The "How?"

	Assignment Category	Types of Problem Covered	Goal	Scoring System
Content Based	Exams (2 Midterms + 1 Final)	MCQ, Short answer Proof Evals, Proof Identification	Notation Proficiency in Set Theory, Logic, Modular Arithmetic, Reading comprehension	Numerical, 70% for A
	Homework (weekly)	Computation, Enumeration Proof Review	Practice new vocabulary, Group work, Community building	Numerical, 80% for A

on Based	Checkpoint Quizzes (daily)	Concept Check	Self-assessment	Completion, Infinite attempts
patio			Formative assessment,	
Partici	Reflection	Creative writing and reflection	Fostering a growth mindset,	
	Exercise (4 or 5)	essays on articles	Promoting awareness of DEI	Completion
	(1013)	videos, book	135463,	
		chapters	Promoting and applying	
			logical thinking to real life	

Technique Based	In-class Participa- tion and Presenta- tion	Different Proof Techniques (Direct, By Cases, Existence, Induction etc.) - Not a com- prehensive list	Stress the major underlying themes and highlight the thinking process	"Frequent" in-class participation required for A - recommend using a spreadsheet to keep track
-----------------	---	---	---	---

Practically			
Perfect		Proof writing proficiency,	
Proofs	A collection		EMPX rubric,
(15-20	of harder	ATEX proficiency	
problems,	Proofs	Elex proneiency,	Latest score
2 weeks		Identification of the correct	is counted,
deadline	Students are	technique	
for first	allowed to		Three
draft,	use any	Croating a concroto list of	quarters E
then	proof	achievements over the	and rest M
another	technique	achievements over the	needed for A
two for		Serifester	
revision)			

COMPONENTS OF THE COURSE V

Preparation for Senior IS Thesis	Expository Paper (video presenta- tion and written article)	A 5-7 page write-up in the style of a Math paper, on a topic of their choice, of the appropriate level of difficulty	Multistep process - Learn how to find sources (bibliography) - Submit a brief outline (identify main results and proof techniques) - Peer review first drafts - Ask and answer questions during audiovisual presentation - Submit a final paper Main focus on communication skills, Demonstration of understanding through visual or tabular examples.	Graded based on how many tasks were completed from a rubric, Mathemati- cal accuracy is given less focus than logical consistency

▷ 20 Students, Meeting MWF for 50 minutes.

INTEGRATION WITH IBL

▷ 20 Students, Meeting MWF for 50 minutes.

Typical second half of class:

- Students shuffled into groups of four at the start of each new concept (typically every week).
- Group work using handout with minimal prior lecture necessary to prepare IBL style notes beforehand.
- Instructor moving around helping with conceptual mistakes, giving hints to get started, asking leading questions but no explicit solution.

INTEGRATION WITH IBL

▷ 20 Students, Meeting MWF for 50 minutes.

Typical second half of class:

- Students shuffled into groups of four at the start of each new concept (typically every week).
- Group work using handout with minimal prior lecture necessary to prepare IBL style notes beforehand.
- Instructor moving around helping with conceptual mistakes, giving hints to get started, asking leading questions but no explicit solution.

In-between classes:

• Students write down outlines for complete proofs.

INTEGRATION WITH IBL

▷ 20 Students, Meeting MWF for 50 minutes.

Typical second half of class:

- Students shuffled into groups of four at the start of each new concept (typically every week).
- Group work using handout with minimal prior lecture necessary to prepare IBL style notes beforehand.
- Instructor moving around helping with conceptual mistakes, giving hints to get started, asking leading questions but no explicit solution.

In-between classes:

• Students write down outlines for complete proofs.

Typical first half of class day:

- Students present their proofs (not preassigned) I typically go in alphabetical order
- Sometimes I will write it down on board as the students dictate to make it a bit faster.
- Motivate new concept (5-10 minutes) but not necessarily precise statements of definition or theorem

- Clarify the goal of each type of assignment explain why homework score cannot work as a substitute of exam or presentation scores
- Encourage discomfort and frustration while learning!
- Invite students to take chance and make mistakes and make reassessments part of the norm.
- Set a higher standard for acceptable final work.

"Did it work?"

Students liked (aka 'Things to Keep'):

- the sheer number of examples/exercises covered.
- satisfaction of solving the P^3 exercises.
- Allowing collaboration for homework
- design of the course

Students liked (aka 'Things to Keep'):

- the sheer number of examples/exercises covered.
- satisfaction of solving the P^3 exercises.
- Allowing collaboration for homework
- \cdot design of the course

Students disliked (aka 'Things to review'):

- difficulty spike in the *P*³ exercises.
- heavier workload than previous Math classes!

Students liked (aka 'Things to Keep'):

- the sheer number of examples/exercises covered.
- satisfaction of solving the P^3 exercises.
- Allowing collaboration for homework
- design of the course

Students disliked (aka 'Things to review'):

- difficulty spike in the *P*³ exercises.
- heavier workload than previous Math classes!

Numerical Scores (average out of 5):

Stimulated interest 4.67 Clarity of explanations 4.67 Helpful feedback 4.67 Organization 4.6 Attended class 4.7

Thank you!

Questions? Email me at schowdhury@wooster.edu.

Find Course Document and Lecture Notes at github.com/subhadipchowdhury/Notes_Intro_To_Proof