
GAUSSIAN CURVATURE AND THE GAUSS-BONNET THEOREM

SUBHADIP CHOWDHURY

1. Preamble

The Gauss-Bonnet Theorem is one of the most beautiful and one of the deepest results in
the differential geometry of surfaces. It concerns a surface S with boundary ∂S in Euclidean
3−space, and expresses a relation between:

• the integral of the Gaussian curvature over the surface,
• the integral of the geodesic curvature of the boundary of the surface, and
• the topology of the surface, as expressed by its Euler characteristic.

Note. If you have some familiarity with the material, you are under no obligation to attempt
the (B) exercises, but you should at least convince yourself that you know how to do them.

2. Basic Differential Geometry of Surfaces

Proposition 2.1. Let (φ,U) be a local chart for a surface M and let q ∈ U with p = φ(q) ∈M .
Then

TpM = (D(φ(q)))(R2)

This implies that (φu(q), φv(q)) forms a basis for TpM , with (u, v) coordinates in U .

Definition 2.2. The restriction of the canonical inner product in R3 to TpM is called the first
Fundamental Form (at p), denoted Ip.

Consider an element of TpM , a tangent vector at p = γ(0) ∈ M to a parametrized curve
γ(t) = φ(u(t), v(t)), t ∈ (ε, ε). Then,

Ip(γ
′, γ′) = E

(
du

dt

)2

+ 2F

(
du

dt

dv

dt

)
+G

(
dv

dt

)2

where E = 〈φu, φu〉 etc.

Definition 2.3. A regular surface M is orientable if it is possible to cover it with an atlas A,
so that ∀i, j ∈ I and ∀p ∈ Ui ∩ Uj

det(φj ◦ φ−1i )(φi(p)) > 0

We will be using the Darboux-Carter frame of reference, constructed by orthonormal vectors
(T, n,B := T × n) where T = γ′ and n is a unit normal to M at p ∈ γ.

Definition 2.4. The Gauss map (on an oriented surface) is the map n : M → S2 ⊂ R3 defined
as

n(p) =
φu × φv
||φu × φv||

(p)

Thus n(p) is a unit vector orthogonal to TpM .
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Definition 2.5. The Weingarten Map is Lp : TpM → TpM defined as

Lp(v) = −Dn(p)(v) = − d

dt
(n ◦ γ)(0)

Definition 2.6. The second fundamental form of a regular oriented surface M at a point p is
the inner product on TpM defined as

IIp(X,Y ) = 〈Lp(X), Y 〉

	Exercises 2.7. (1) (B) Prove that Lp is self adjoint. [H: Lp is linear]
(2) Consequently show that the Weingarten map is self adjoint.
(3) Prove that

IIp(γ
′, γ′) = e

(
du

dt

)2

+ 2f

(
du

dt

dv

dt

)
+ g

(
dv

dt

)2

where e = −〈nu, φu〉 = −〈n, φuu〉 etc.

Definition 2.8. The Gaussian Curvature is defined as

K(p) = det(Dn(p)).

Thus it is the product of the two principal curvatures at p which in turn are the traces of the
matrix Dn(p).

	Exercises 2.9. (1) (B) Show that for a round 2−sphere of radius r about the origin,
Lp = 1

r Id. Consequently, what is the Gaussian curvature of a sphere?

(2) Let S be a quadratic surface z = ax2 + by2, parametrize S by the map X : R2 → S
given by

X(u, v) = (u, v, au2 + bv2)

(a) Evaluate Xu, Xv, n.
(b) Check that Dn(p)(Xu) = nu and evaluate it.
(c) Check that nu and nv are orthogonal to n.

(d) Show that at p = origin, the map Dn(p) is given by

(
−2a 0

0 −2b

)
w.r.t. the

basis Xu = (1, 0, 0) and Xv = (0, 1, 0) of ToriginS.
(3) Consider the helicoid parametrised as

X(u, v) = (u cos v, u sin v, v)

Do similar steps as above and prove that

Dn(Xu) = nu =
Xv

(1 + u2)3/2
and Dn(Xv) = nv =

Xu

(1 + u2)1/2

Theorem 2.10 (Theorema Egregium). The Gaussian curvature κ(p) can be formulated entirely
using Ip and its first and second derivatives. As such, it is an intrinsic value of the surface itself
at p, i.e. it does not depend on the embedding of the surface in R3 and depends only on t he
metric tensor g at p.

Proof of this result uses Christoffel symbols which we will not go into in this note.
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3. Gauss-Bonnet Theorem

Definition 3.1. The geodesic curvature of a regular curve γ on a regular surface S, at a given
point p is defined as

κg(p) := 〈γ′′, B(p)〉

	Exercises 3.2. (1) (B) Show that

γ′′ = κgB + κnn

where κn := 〈γ′′, n〉 is the normal curvature of the curve γ.
(2) Consider the circle of latitude θ around the sphere of radius 1. What’s the geodesic

curvature of this curve?

Theorem 3.3 (Gauss-Bonnet Formula). Let (M,n) be an oriented surface with M ⊂ R3 and
let (φ,U) be a coordinate patch with φ : U → R3, φ(U) ⊂M .

Let γ be a piecewise regular curve on M enclosing a region R ⊂M .
Let {γi}ni=1 be the regular curves that form γ and denote by {αi}ni=1 the ‘jump’ angles at the

junction points (exterior angles).
Then we have ∫

R

K dA+

∫
γ

κg ds = 2π −
n∑
i=1

αi

	Exercises 3.4. (1) (B) Check that Gauss-Bonnet formula holds for the polar cap enclosed
by the circle of latitude θ as above.

(2) (B) Prove (without using Gauss-Bonnet formula) that area of geodesic triangle on the
unit 2−sphere S2 with interior angles α, β, and γ is given by T = α+ β + γ − π. Check
that this is consistent with above formula.

(3) Let M ⊂ R3 be an oriented compact regular surface, K its Gaussian curvature and χ
its Euler characteristic. Then prove that∫

M

K dA = 2πχ(M)

Here are the steps:
(a) Consider a triangulation of M and apply the G-B formula to each of the triangles.
(b) Summing over all triangles cancels out the κg terms.
(c) Conclude that ∫

M

K dA = 2πV − πF

(d) Show that 2πV − πF = 2πχ(M).

The most general statement of the Gauss-Bonnet theorem is given by∫
M

K dA+

∫
∂M

κg ds = 2πχ(M)

for a compact Riemmannian manifold M with boundary ∂M . If the boundary ∂M is piecewise
smooth, then we interpret the integral

∫
∂M

kg ds as the sum of the corresponding integrals along
the smooth portions of the boundary, plus the sum of the angles by which the smooth portions
turn at the corners of the boundary.
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	Exercises 3.5. (1) (B) Let S ⊂ R3 be a smooth closed surface (this is automatically
orientable; why?) which is not homeomorphic to S2. Show that there are points on S
where the Gaussian curvature is positive, zero and negative.

(2) Let S be a torus of revolution in R3. Visualize the image of the Gauss map, and see
directly (without using the Gauss-Bonnet Theorem) that∫

S

K dA = 0

(3) Let S be a smooth surface homeomorphic to S2. Suppose Γ ⊂ S is a simple closed
geodesic, and let A and B be the two regions on S with Γ as boundary. Let n : S → S2

be the Gauss map. Prove that n(A) and n(B) have the same area on S2.
(4) Let S ⊂ R3 be a surface with Gaussian curvature K ≤ 0. Show that two geodesics γ1

and γ2 on S which start at a point p can not meet again at a point q in such a way that
together they bound a region S′ on S which is homeomorphic to a disk.

(5) Let S ⊂ R3 be a surface homeomorphic to a cylinder and with Gaussian curvature
K < 0 (e.g. a hyperboloid of one sheet). Show that S has at most one simple closed
geodesic.

(6) Let S ⊂ R3 be a smooth closed surface of positive curvature, and thus homeomorphic
to S2. Show that if Γ1 and γ2 are two simple closed geodesics on S, then they must
intersect one another.

(7) If M is a closed orientable surface in R3 with K > 0 everywhere, then prove that M
must be convex.
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