
FUNDAMENTAL GROUPS AND COVERING SPACES

SUBHADIP CHOWDHURY, OISHEE BANERJEE

1. Preamble

The following exercises are intended to introduce you to some of the basic ideas in algebraic

topology, namely the fundamental group and covering spaces. Exercises marked with a (B) are

basic and fundamental. If you are new to the subject, your time will probably be best spent

digesting the (B) exercises. If you have some familiarity with the material, you are under no

obligation to attempt the (B) exercises, but you should at least convince yourself that you know

how to do them. If you are looking to focus on specific ideas and techniques, I’ve made some

attempt to label exercises with the sorts of ideas involved.

2. Two extremely important theorems

If you get nothing else out of your quarter of algebraic topology, you should know and

understand the following two theorems. The exercises on this sheet (mostly) exclusively rely on

them, along with the ability to reason spatially and geometrically.

Theorem 2.1 (Seifert-van Kampen). Let X be a topological space and assume that X = U∪V
with U, V ⊂ X open such that U ∩ V is path connected and let x0 ∈ U ∩ V . We consider the

commutative diagram

π1(U, x0)

π1(U ∩ V, x0) π1(X,x0)

π1(V, x0)

j1∗i1∗

i2∗ j2∗

where all maps are induced by the inclusions. Then for any group H and any group homomor-

phisms φ1 : π1(U, x0)→ H and φ2 : π1(V, x0)→ H such that

φ1i1∗ = φ2i2∗,
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there exists a unique group homomorphism φ : π1(X,x0)→ H such that φ1 = φj1∗, φ2 = φj2∗.

π(U, x0)

π(U ∩ V, x0) π(X,x0) H

π(V, x0)

j1∗

φ1

i1∗

i2∗

∃!φ

j2∗

φ2

Although it may not be clear from the statement, π1(X,x0) is uniquely determined in terms

of π1(U, x0), π1(V, x0) and π1(U ∩ V, x0) by the theorem. In section 4, we describe some further

ideas needed to observe this and restate the theorem in a more familiar form.

Theorem 2.2 (Galois correspondence). For any reasonably nice topological space X, there

is a one-one correspondence{
Conjugacy classes of

subgroups H ≤ π1X

}
←→

{
Isomorphism classes of

covering spaces f : X̃H → X

}
.

The correspondence proceeds by associating a subgroup H with a cover X̃H for which f∗(π1X̃H)

is conjugate to H in π1X.

If H C π1X is normal, then there is an action of Q = π1X/H on X̃H . This action is free

and properly discontinuous, and the quotient X̃H/Q is homeomorphic to X.

3. CW complex and Cell decomposition

Most “nice” topological spaces can be given a skeletal structure. For example, one familiar

way of constructing the torus T2 = S1 × S1 is by identifying opposite sides of a square. Thus

the 4 edges become two intersecting circles in the torus. Thus we can think of T2 obtained as

gluing a disk onto this 1−dimensional structure (the 1-skeleton) via some map on the boundary.

A natural generalization goes as follows:

Step 1 : Start with a discrete set of points, called the 0−skeleton.

Step 2 : Inductively, form the n skeleton Xn from Xn−1 by attaching n-disks Dn’s called n-cells

en, via maps χα : Sn−1 = ∂Dn → Xn−1.

Step 3 : Take X = Xn for finite n or X = ∪nXn with the weak topology if continuing

indefinitely.

Spaces constructed this way are called CW complexes or cell complexes.

4. Free products and Amalgamation of groups

We suppose we are given a set S, and a collection of groups {Gs}s∈S . The idea of the free

product of the Gs is to take the union of the generators and relations for the Gs, with no

additional relations. We give a precise definition in the case S is finite. Obvious generalizations

can be made in the infinite case using presentations of groups.
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Definition 4.1. The free product G ∗H of groups G and H is the set of elements of the form

g1h1g2h2...grhr,

where gi ∈ G and hi ∈ H, with g1 and hr possibly equal to e, the identity element of G and H.

Free products of more than two groups are defined recursively, i.e.,

G1 ∗G2 ∗ ... ∗Gn =
(
G1 ∗G2 ∗ ... ∗G(n−1)

)
∗Gn.

The free group Fn is the free product of Z with itself n times.

	Exercise 4.2. (B) Give a group presentation of Z4 ∗ Z5.

Free products of groups are generalized by a notion of amalgamated products of groups joined

together along specified subgroups. Let N,G1, G2 be groups and i1 : N → G1, i2 : N → G2 be

group homomorphisms. For a triple (G, j1, j2) such that

G1

N G

G2

jii1

i2 j2

we say that it satisfies the universal property if for any other triple (H,φ1, φ2) as above, there

exists a unique group homomorphism φ : G→ H such that φ1 = φj1 and φ2 = φj2.

Definition 4.3. The amalgamated free product associated to (N,G1, G2, i1, i2) is a triple

(G, j1, j2) satisfying this universal property. We denote G as G1 ∗N G2 (keep in mind the maps

involved!).

Amalgamated free product is unique and is constructed as follows: let 〈〈N〉〉 be the normal

subgroup of G1 ∗G2 generated by elements of the form i1(n)i2(n)−1 for n ∈ N ; then

G1 ∗N G2 := (G1 ∗G2)/〈〈N〉〉.

Thus a reformulation of the Seifert-van Kampen theorem tells us that

π1(X,x0) = π1(U, x0) ∗π1(U∩V,x0) π1(V, x0)

where the maps involved are induced by inclusions.

	Exercise 4.4. Think about the case G1 = G2 = {1}.

(1)(B) Prove that π1(Sn, p) = 1 for all n ≥ 2 and all p ∈ Sn.

(2)(B) Deduce that π1(RPn, p) is isomorphic to Z2 for all n ≥ 2 and p ∈ RPn.

(3)(B) What is π1(RP1, p)?
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4.1. General Strategy to find the Fundamental group of a CW complex.

Step 1 : If X is homotopic to a simpler X ′, then use that instead.

Step 2 : The case N = G2 = {1} tells us an interesting fact, namely if we have a cell decompo-

sition of a space X, then we can throw away the n-cells for n ≥ 3 for calculating the

fundamental group.1

Then what about 2−cells? We can account for them using the case when G2 = 1.

We get the following proposition

Proposition 4.5. Assume X is obtained from A by adjoining a two cell e with

characteristic map χe : S1 → A. Let a = χe(1), and let α ∈ π1(A, a) denote the class

of the path t 7→ χe(exp2πit). Then

π1(X, a) ∼= π1(A, a)/〈α〉.

	Exercise 4.6. Prove this Proposition.

Step 3 : Use above proposition to get rid of 2−cells. Thus we find that the fundamental group

we are interested in is isomorphic to the quotient of π1(X1) by the smallest normal

subgroup generated by paths induced by χ2−cells.

Step 4 : Once you are in X1, van Kampen theorem should suffice.

Note that this theorem is a special case of the fact that spaces which are homotopy equivalent

have isomorphic fundamental groups, and thus, helps in executing Step 1.

	Exercise 4.7. You will need exercise 5.4.2 to do the following.

(1) (B) Let X ⊂ R3 be the union of n lines through the origin. Compute π1(R3 −X).

(2) (B) Calculate the fundamental groups of a Torus, a Klein Bottle and RP2.

We finish this section by citing another important idea in geometric group theory called the

HNN-extension.It is easy to find out the U and V in Seifert-van Kampen theorem for example

when you are cutting a surface X along a separating curve to get U and V . What happens

when you cut it along a non-separating curve? What if U ∩ V is not connected?

Definition 4.8. Suppose φ, ψ : N ↪→ A are both injective homomorphisms. If A has presenta-

tion 〈S | R〉 then the Higman-Neumann-Neumann (HNN) extension is

A∗N ∼=
〈
S, t | R, {tψ(n)t−1 = φ(n) | n ∈ N}

〉
When ψ is just the identity homomorphism induced by inclusion, we may also denote the

HNN-extension as A∗φ.

Take a look at section 8 to find out how they arise as fundamental groups.

1Thus if X is a compact, path connected space then, for any cell decomposition of X, the inclusion of the

2−skeleton X2 into X, i : X2 → X, induces an isomorphism of groups (for any basepoint x ∈ X2)

i∗ : π1(X
2, x)

∼−→ π1(X,x).
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5. Algebraic topology of graphs

The following exercise will explore some aspects of the algebraic topology of graphs. For

our purposes, a graph is a topological space X consisting of some (possibly infinite) number of

copies of the unit interval I = [0, 1], with certain identifications of endpoints (via the quotient

topology). For example, the circle S1 is a graph consisting of one copy of I with endpoints iden-

tified. To study the algebraic topology of graphs, we will require the following preliminary results.

Basic, super-important theorem: π1(S1) = Z.

Definition 5.1. A topological space X is said to be contractible if there is a (continuous) map

f : X × [0, 1]→ X such that

(1) f(·, 0) = id

(2) f(·, 1) is constant.

One could equivalently say that X is contractible if it deformation retracts to a point (see

Section 7), or if the identity map is homotopic to a point.

Theorem 5.2. If X is contractible, then π1(x) = {1}, the trivial group.

	Exercise 5.3. (B) Prove this! (Definitions)

	Exercises 5.4. (1) (B) Prove that a tree (in the graph-theoretic sense) is contractible.

(Definitions)

(2) (B) Show that the fundamental group of the following graph X is the free group on

two generators a, b (van Kampen):

Figure 1. Figure-8

(3) (B) Is the following graph a covering space of X as in (2)? (Definitions)

Figure 2. Topological Rose
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(4) (B) Is the following graph Y a covering space of X as in (2)? (Definitions)

Figure 3.

(5) (B) If so, find a subgroup H ≤ F2 that corresponds to a covering Y → X. (Galois

correspondence)

(6) Is the subgroup of the previous question normal in F2? If so, describe a homomorphism

f : F2 → G with kernel H. (Galois correspondence; normal subgroup case)

(7) Is every index-3 subgroup of F2 normal?

6. Group Actions and Galois correspondence

The immediate goal of the theory of covering spaces developed here is to use them to compute

π1(X).

6.1. Group Actions. A (left) action of a (topological) group G on a topological space X

consists of a (continuous) map f : G×X → X s.t.

(1) ex = x ∀x ∈ X,

(2) g1(g2x) = (g1g2)x ∀g1, g2 ∈ G, x ∈ X.

Thus given a group G and a space X , an action of G on X is a homomorphism from G to

the group Homeo(X). We shall be interested in actions satisfying the following condition:

Each x ∈ X has a neighborhood U such that all the images g(U) for varying g ∈ G are disjoint,

i.e g1(U) ∩ g2(U) 6= ∅ implies g1 = g2. These are called covering space actions.

If an action of a group G on X satisfies this condition, then p : X → X/G is a covering map.

Assuming the path lifting and homotopy lifting properties we arrive at the following theorem:

Theorem 6.1. For a covering space action of a group G on a simply-connected space X the

fundamental group π1(X/G) is isomorphic to G.
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6.2. Galois correspondence. An isomorphism between covering spaces p1 : E1 → X and

p2 : E2 → X is a homeomorphism f : E1 → E2 such that the following diagram commutes.

E1 E2

X X

f

p1 p2

∼=

The materials we are building in this section will eventually give us a tool to classify covering

spaces of a given topological space X up to isomorphism, known as the Galois correspondence.

It follows from the path lifting and homotopy lifting properties of covering maps that:

Proposition 6.2. Let p : (E, e0) → (X,x0) be a covering projection. Then p∗ : π1(E, e0) →
π1(X,x0) is a monomorphism.

Theorem 6.3 (Lifting criterion). Let (Y, y0)→ (X,x0) be a map of pointed spaces, Y being

path connected and locally path connected, and p : (E, e0) → (X,x0) being a covering space.

Then f has a lift

f̃ : (Y, y0)→ (E, e0)

iff

f∗π1(Y, y0) ⊂ p∗π1(E, e0).

Moreover, this lift is unique.

Now with the help of the unique lifting property for covering projections, we get the uniqueness

half of the Galois correspondence:

Theorem 6.4. Let X be a path connected and locally path connected space, x0 its base point.

Two path connected covering spaces p1 : (E1, e1) → (X,x0) and p2 : (E2, e2) → (X,x0) are

isomorphic as pointed spaces via an isomorphism f : (E1, e1)→ (E2, e2) iff

p1∗π1(E1, e1) = p2∗π1(E2, e2).

E1 and E2 are isomorphic without regard to basepoints iff p1∗π1(E1, e1) and p2∗π1(E2, e2) are

conjugates in π1(X,x0).

For an arbitrary covering space p : E → X one can consider the isomorphisms from this

covering space to itself, called deck transformations or covering transformations, and these form

a group under composition called the Deck group, denoted by G(E). Noting that the action of

G(E) on E is a covering space action (prove it!), we can now conclude with the existence part

of the Galois correspondence:

Theorem 6.5. If a path-connected, locally path-connected space X has a simply connected

covering space, then every subgroup of π1(X,x0) is realized as p∗π1(E, e0) for some covering

projection p : (E, e0)→ (X,x0).
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Definition 6.6. A covering space p : E → X is normal if for each point x in X and each pair

of points e1 and e2 in the fiber of x, there is a Deck transformation taking e1 to e2.

Equivalently, a covering space is normal if its fundamental group is isomorphic to a normal

subgroup of the fundamental group of the base space (prove this!). A good exercise at this point

will be to try solving Exercise 4.4 (2) and (3), and (5) from section 8.

7. Algebraic topology of surfaces

The exercises in this section are concerned with aspects of the fundamental groups of closed

oriented surfaces, and of higher-dimensional manifolds built out of surfaces.

Definition 7.1. The surface of genus g, denoted Σg, is the set of points in R3 at a distance ε

from the following graph Xg, embedded as shown in R3:

One approach to computing π1(Σg) is to proceed via deformation retractions.

Definition 7.2. Let A ⊂ X be a pair of spaces. A map f : X × I → X is a deformation

retraction onto A if the following is satisfied:

(1) f(·, 0) = id,

(2) f(x, 1) ∈ A for all x ∈ X,

(3) f(a, t) = a for all a ∈ A, t ∈ I.

Theorem 7.3. If f is a deformation retraction of X onto A, then f(·, 1) : X → A induces an

isomorphism f1,∗ : π1X → π1A.

	Exercises 7.4. (1) (B) Let Σ1
1 denote Σ1 after deleting an open disk. Compute π1Σ1

1.

You may assume the result of Section 5, Exercise (2). [Hint: The idea is to find a

deformation retraction of Σ1
1 onto the graph X.] (Definitions)

(2) (B) Now let Σ2
1 denote Σ1 after deleting two open disks that have disjoint closures.

Compute π1Σ2
1.
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(3) (B) Use the previous exercises to compute π1Σg (here of course we are dealing with

closed surfaces!). [Hint: Use induction.] (van Kampen)

(4) (B) Draw a picture of Σ2. Find a point p ∈ Σ2 and elements a, b, c, d of π1(Σ2, p) for

which π1Σ2 has the following presentation:

π1Σ2 = 〈a, b, c, d | [a, b][c, d] = 1〉.

(Remember that [x, y] = xyx−1y−1 is the commutator of x, y).

(5) Is the map f : π1Σ2 → Z/2 taking a to 1 and all other generators to 0 actually well-

defined? If so, determine what the corresponding cover Y of Σ2 looks like. Is it another

surface? What is its genus? How does the quotient Z/2 act on Y ? Can you find a

presentation for π1Y ? (Galois correspondence)

(6) Check that the map α : π1Σ2 → π1Σ2 taking a to ab and fixing all other generators is a

well-defined automorphism of π1Σ2.

(7) Find a homeomorphism f : Σ2 → Σ2 which fixes your choice of p ∈ Σ2, for which f∗ is

given by α.

(8) The mapping torus of f is the following 3-manifold obtained by a quotient construction:

Mf = Σ2 × [0, 1]/{(x, 1) = (f(x), 0)}.

Compute π1Mf . (van Kampen)

8. Further Exercises

(1) Find a degree two covering map f : Σ3 → Σ2. Let F : Σ3 → Σ3 × Σ2 be the graph of f .

What map does F induce on π1?

(2) Suppose Σ is a compact orientable surface and γ : S1 → Σ is a simple closed curve that

is not homotopic to a point. Suppose further that γ is non-separating, so Σ r Im γ has

one path-component Σ0, and two-sided (that is, γ is not the core of a Möbius band).

Then show that

π1(Σ) ∼= π1(Σ0) ∗〈γ〉 .

(3) Let f : X → X be a homeomorphism from a CW-complex X to itself. Calculate π1(Mf )

in terms of π1(X) and f∗.
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Figure 4. Mapping Torus Mf

(4) For each of the following covering spaces of X = S1 ∨ S1, identify the corresponding

subgroup of π1(X), and say whether the following covers are regular (i.e. normal) or

not.

(5) Let Σg be a surface of genus g ≥ 0. Let ∆ ⊂ Σg × Σg be the image of the diagonal

embedding x 7→ (x, x). Let X be the complement of ∆ in Σg × Σg. Compute π1(X).

(6) Let Y be the complement of the diagonal {(x, x) : x ∈ T3} in T3 × T3 where T3 =

S1 × S1 × S1. What is π1(Y )?

(7) We know that there is no way to define a contnuous square root map on the entire

complex plane. More generally, prove that we cannot always find a square root of a

complex valued function on a given topological space. In particular show the following:

(a) Let X be a topological space and let f : X → C be a function which is never 0.

Show that there exists a degree two covering space p : X̃ → X such that p∗f has a

square root i.e. ∃ f̃ : X̃ → C such that f̃(x)2 = f(p(x)).

(b) Show that f has a square root if and only if p : X̃ → X is a trivial covering space

i.e. isomorphic to the covering space X
∐
X → X.

[Hint: Use path lifting criterion]

(8) Using the fact that trefoil knot is a Torus knot, compute π1(R3 −K) where K is the

Trefoil knot. Do it for any torus knot in general.
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Figure 5. Trefoil Knot

(9) What is π1(SL(2,R)) regarded as a subspace of R4?

[Hint: Show that SL(2,R) is homeomorphic to {Group of upper triangular matrices

with positive entries in the diagonal}×{Rotation matrices}]
(10) Given an arbitrary group G, can you construct a space such that its fundamental group

is G?
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