INMO Training Camp Problem Sheet

bmat0917@isibang.ac.in

January 10, 2012

1 Some Problems

1. Let $A B C$ be a triangle in which $\angle B A C=60^{\circ}$. Let $P($ similarly $Q)$ be the point of intersection of the bisector of $\angle A B C$ (similarly of $\angle A C B)$ and the side $A C$ (similarly $A B$). Let r_{1} and r_{2} be the in-radii of the triangles $A B C$ and $A P Q$, respectively. Determine the circumradius of $A P Q$ in terms of r_{1} and r_{2}.
2. Let P be a point inside a triangle $A B C$ such that $\angle P A B=\angle P B C=\angle P C A$ Suppose $A P, B P, C P$ meet the circumcircles of triangles $P B C, P C A, P A B$ at X, Y, Z respectively $(\neq P)$. Prove that $[X B C]+[Y C A]+$ $[Z A B] \geq 3[A B C]$
3. Given a triangle $A B C$, the internal and external bisectors of angle A intersect $B C$ at points D and E respectively. Let F be the point (different from A) where line $A C$ intersects the circle w with diameter $D E$. Finally, draw the tangent at A to the circumcircle of triangle $A B F$, and let it hit w at A and G. Prove that $A F=A G$.
4. Angle bisectors $A A_{1}, B B_{1}, C C_{1}$ in triangle $\triangle A B C$ intersect at incenter I. Line $B_{1} C_{1}$ intersects circumcircle of triangle $\triangle A B C$ at M and $N . R_{1}$ is radius length of circle circumscribed to the triangle $\triangle M I N$, and R radius length of circle circumscribed to the triangle $\triangle A B C$ Prove that $R_{1}=2 R$.
5. D and E are points on side BC of $\triangle A B C$ such that $\frac{B D}{D C} \cdot \frac{B E}{E C}=\frac{A B^{2}}{A C^{2}}$. Show that $\angle D A B=\angle E A C$.
6. Let $A B C D$ be a convex quadrilateral such that $\angle D A B=\angle A B C=\angle B C D$. Let H and O denote the orthocenter and circumcenter of $\triangle A B C$. Prove that D, O, H are collinear.
7. Let E, F be points on sides $A C, A B$ of triangle $A B C$. The circumcircle of $\triangle A F E$ meets the circumcircles of $\triangle B E C$ and $\triangle B F C$ in M and N respectively. If $B M$ meets $C N$ in T, prove that $A T \| B C$.
8. Let $p(x)$ and $q(x)$ be polynomials such that $\left[p\left(x^{2}+1\right)\right]=\left[q\left(x^{2}+1\right)\right]$. Prove that $p(x)=q(x)$. Here [.] denotes greatest integer function.
9. Solve the following equation for $x \in\left(0, \frac{\pi}{2}\right)$:

$$
\frac{2 \sqrt{x}}{\pi}+\sqrt{\sin x}+\sqrt{\tan x}=\frac{1}{2 \sqrt{x}}+\sqrt{\cot x}+\sqrt{\cos x} .
$$

10. Find all polynomials $p(x)$ with $p(0)=0$ such that for the strictly increasing function $f: \mathbf{R}^{+} \cup\{0\} \rightarrow \mathbf{R}^{+}$the following equality holds: $2 p(f(x))=f(p(x))+f(x)$.
11. Find all polynomials $p(x)$ and $q(x)$ such that:

$$
p^{2}(x)+q^{2}(x)=\left(3 x-x^{3}\right) p(x) q(x), \forall x \in(0, \sqrt{3})
$$

12. Find all polynomials $p(x)$ such that, for all non zero real numbers x, y, z such that $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$ we have:

$$
\frac{1}{p(x)}+\frac{1}{p(y)}=\frac{1}{p(z)}
$$

13. The polynomial $p(x)$ has positive coefficients and degree n. If the sum of the reciprocals of its coefficients equals 1 , prove that

$$
\sqrt{p(4)}+1 \geq 2^{n+1}
$$

14. Find all polynomials $P(x)$ with real coefficients that satisfy the equality $P(a-b)+P(b-c)+P(c-a)=$ $2 P(a+b+c)$ for all triples a, b, c of real numbers such that $a b+b c+c a=0$.
15. Let P be any point inside $\triangle A B C$ with circumcircle (O). $A P, B P, C P$ meet (O) again in X, Y, Z respectively. Q is any point on (O). Lines $Q X, Q Y, Q Z$ meet the sides $B C, C A, A B$ in K, L, M respectively. Show that K, M, P, L are collinear.
16. ($\square)$ Let $\triangle A B C$ be an acute-angled triangle with $A B \neq A C$. Let H be the orthocenter of triangle $A B C$, and let M be the midpoint of the side $B C$. Let D be a point on the side $A B$ and E a point on the side $A C$ such that $A E=A D$ and the points D, H, E are on the same line. Prove that the line $H M$ is perpendicular to the common chord of the circumscribed circles of triangle $\triangle A B C$ and triangle $\triangle A D E$.
17. Let n be natural and $1=d_{1}<d_{2}<\ldots<d_{k}=n$ be the positive dividers of n. Find all the n such that $2 n=d_{5}^{2}+d_{6}^{2}-1$.
18. The three roots of $P(x)=x^{3}-2 x^{2}-x+1$ are $a>b>c \in \mathbb{R}$. Find the value of $a^{2} b+b^{2} c+c^{2} a$.
19. Given a quadrilateral $A B C D$ which is inscribed in (O) such that $A C \perp B D$. The tangents of (O) through A, B, C, D intersect each other and make a circumscribed quadrilateral $X Y Z T$. X X intersects $Y T$ at P. Prove that the incenters of 8 triangles $X P Y, Y P Z, Z P T, T P X, X Y Z, Y Z T, Z T X, T X Y$ are concyclic.
20. Let a, b, c be given positive integers. Prove that there exists some positive integer N such that $a \mid N b c+b+c$, $b|N c a+c+a, c| N a b+a+b$ if and only if, denoting $d=g c d(a, b, c)$ and $a=d x, b=d y, c=d z$, the positive integers x, y, z are pairwise coprime, and also $\operatorname{gcd}(d, x y z) \mid x+y+z$.
21. Find all Polynomials $P(X) \in \mathbb{R}[X]$ which satisfy $P(\sin (x))=P(\cos (x)) \forall x \in \mathbb{R}$.
22. - If z_{1}, z_{2}, z_{3} denote the vertices of a triangle $\triangle A B C$ with center at origin. What is the Nine-Point Centre?

- Take a quadrilateral $A B C D$ inscribed in a circle. Prove that the nine-point centers of the triangles $A B C, A B D, B C D a n d C D A$ are concyclic.(lie on w, let.)
- Define the center of the above circle w to be the Nine-Point Center of the quadrilateral $A B C D$. Can you generalise the concept to a general polygon inscribed in a circle?

2 Some Theory (Harmonic Division):

Let $A B$ be a line segment. Points P and Q lying on $A B$ are said to divide $A B$ harmonically if $\frac{A P}{P B}=\frac{A Q}{B Q}=-\frac{A Q}{Q B}$.So, P and Q divide $A B$ in the same ratio one internally and one externally. If the points P, Q divide $A B$ harmonically, then A, B also divide $P Q$ harmonically (Check!). We shall say that $(A, B ; P, Q)$ is a harmonic division whenever P and Q divide $A B$ harmonically.

The following theorems have been left as exercise:

- Let p and q be two distinct lines in a plane and P is point in the plane not on any of these lines. A, C, B, D are points on p such that $(A, B ; C, D)$ is a harmonic division. $P A, P B, P C, P D$ meet the line q in K, L, M, N respectively. Show that $(K, M ; L, N)$ is a harmonic division. (Use Menelaus Theorem to prove this.)
- Suppose A, C, B, D are points on a line such that $(A, B ; C, D) . P$ is a point in the plane such that $\angle A P B=90^{\circ}$. Then $P B$ bisects $\angle P B D$.

1. $A D$ is the altitude of $\triangle A B C$ with D on $B C . P$ is any point on $A D$. The lines $B P, C P$ meet the sides $A C, A B$ in E, F respectively. Show that $A D$ bisects $\angle E D F$. [Hint: Let $D F$ meet $B E$ in K. Show that $(B, P ; K, E)$ is a harmonic division.Now apply Theorem 2.]
2. Let A, B, C, D be points in a line such that $(A, C ; B, D)$ is a harmonic division. If O is the midpoint of $A B$, show that $O B^{2}=O C \cdot O D$.
3. Suppose $A D, B E, C F$ are three concurrent lines in a $\triangle A B C$ with D, E, F lying on $B C, C A, A B$ respectively. If $E F$ meets $B C$ in T, show that $(B, C ; D, T)$ is a harmonic division.
4. Let $A B C D$ be a convex quadrilateral. $A D$ meets $B C$ in K and the diagonals $A C, B D$ meet in E. If $K E$ meets $A B$ and $C D$ in P and Q respectively, show that $(K, E ; Q, P)$ is a harmonic division.
