KINMOTC 2011-Problem Sheet

Subhadip Chowdhury
bmat0917@isibang.ac.in

January 7, 2012

The \diamond marked problems are easier. But other than that, the following are NOT according to order of difficulty

1. Given a scalene triangle $A B C$. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the points where the internal bisectors of the angles $C A B, A B C$, $B C A$ meet the sides $B C, C A, A B$, respectively. Let the line $B C$ meet the perpendicular bisector of $A A^{\prime}$ at $A^{\prime \prime}$. Let the line $C A$ meet the perpendicular bisector of $B B^{\prime}$ at B^{\prime}. Let the line $A B$ meet the perpendicular bisector of $C C^{\prime}$ at $C^{\prime \prime}$. Prove that $A^{\prime \prime}, B^{\prime \prime}$ and $C^{\prime \prime}$ are collinear.
2. In triangle $A B C, M$ is midpoint of $A C$, and D is a point on $B C$ such that $D B=D M$. We know that $2 B C^{2}-A C^{2}=$ $A B . A C$. Prove that

$$
B D \cdot D C=\frac{A C^{2} \cdot A B}{2(A B+A C)}
$$

3. \diamond A convex quadrilateral is circumscribed about a circle. 4 circles are inscribed in the quadrilateral in such a way that each of them touches two consequtive sides of the quadrilateral and two neighbouring circles. Prove that at least two of the 4 circles have same radii.
4. A convex quadrilateral $A B C D$ is circumscribed about a circle with centre P. A straight line through P intersects $A B$ and $C D$ at X and Y respectively. If $P X=P Y$, prove that

$$
A X \cdot D Y=B X . C Y
$$

5. (a) \diamond If z_{1}, z_{2}, z_{3} denote the vertices of a triangle $A B C$ with center at origin. What is the Nine-Point Centre?
(b) Take a quadrilateral $A B C D$ inscribed in a circle. Prove that the nine-point centres of the triangles $A B C$, $A B D, B C D$ and $C D A$ are concyclic.(lie on ω, let.)
(c) Define the center of the above circle ω to be the Nine-Point Center of the quadrilateral $A B C D$. Can you generalise the concept to a general polygon inscribed in a circle?
6. At the corners of any equilateral triangle $A_{1} B_{1} C_{1}$ let there be hinged three equilateral triangles $A_{1} A_{2} A_{3}, B_{1} B_{2} B_{3}$, $C_{1} C_{2} C_{3}$ of any sizes and positions. Then will the midpoints of each of the sets of three segments $\left(B_{1} C_{3}, C_{1} B_{2}, B_{3} C_{2}\right)$, $\left(A_{2} B_{1}, B_{3} A_{1}, A_{3} B_{2}\right),\left(A_{1} C_{2}, C_{1} A_{3}, A_{2} C_{3}\right)$ be the corners of an equilateral triangle?
7. The whole plane is coloured using 2 colours.
(a) \diamond Show that one can always get 2 points at $d(\in \mathbf{R}, d>0)$ distance which have the same colour.
(b) \diamond Prove that there exists a colour which contains points at every mutual distance.
(c) Show that a monochromatic equilateral triangle is present. In fact show that it is possible to get a monochromatic equilateral triangle of either side 1 or side $\sqrt{3}$. Also demonstrate a colouring such that one has no monochromatic equilateral triangle of side 1.
(d) Prove that some rectangle has its vertices all the same color.
8. Let $A B C$ be an equilateral triangle (i. e., a triangle which satisfies $B C=C A=A B$). Let M be a point on the side $B C$, let N be a point on the side $C A$, and let P be a point on the side $A B$, such that $S(A N P)=S(B P M)=$ $S(C M N)$, where $S(X Y Z)$ denotes the area of a triangle $X Y Z$. Prove that $\triangle A N P \cong \triangle B P M \cong \triangle C M N$.
9. Let P be an interior point of a circle and $A_{1}, A_{2}, \cdots, A_{10}$ be points on the circle such that $\angle A_{1} P A_{2}=\angle A_{2} P A_{3}=$ $\ldots=\angle A_{10} P A_{1}=\frac{\pi}{5}$. Prove that $P A_{1}+P A_{3}+P A_{5}+P A_{7}+P A_{9}=P A_{2}+P A_{4}+P A_{6}+P A_{8}+P A_{10}$.
10. If $\angle A B C$ in $\triangle A B C$ is equal to $\frac{\pi}{3}$, prove that A, N (Nine Point Center) and I (Incenter) are collinear.
11. Let $A B C D$ be a trapezeum with $A B \| D C$ and $A B>C D . E$ and F are points on $A B$ and $D C$ respectively such that $\frac{A E}{E B}=\frac{D F}{F C}$. Let K and L be points on the segment $E F$ such that $\angle B K A=\angle B C D$ and $\angle D L C=\angle A B C$. Show that K, L, B, C are concyclic.
12. In a circle with centre at O and diameter $A B$, two chords $B D$ and $A C$ intersect at E. F is a point on $A B$ such that $E F \perp A B$. If $C F$ intersects $B D$ in G. If $D E=5$ and $E G=3$, determine $B G$.
13. Let M, Y, X be mid-points of the three sides $A B, B C, C A$ of $\triangle A B C$. Let P be the foot of perpendicular from M to the internal angle bisector of $\angle B A C$. If $P X=P Y$, find $\angle B A C$.
14. \diamond Show that there are no regular polygons with more than 4 sides inscribed in an ellipse (which is not a circle).
15. \diamond Let $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ be three non-coplanar chords of a sphere and let them all pass through a common point P inside the sphere. There is a (unique) sphere S_{1} passing through A, B, C, P and a (unique) sphere S_{2} passing through $A^{\prime}, B^{\prime}, C^{\prime}, P$. If S_{1} and S_{2} are externally tangent at P, then prove that $A A^{\prime}=B B^{\prime}=C C^{\prime}$.
16. Determine all functions f from the set of positive integers to the set of positive integers such that, for all positive integers a and b, there exists a non-degenerate triangle with sides of lengths $a, f(b)$ and $f(b+f(a)-1)$.
17. \diamond Let $a \neq b$ and $a, b \in \mathbf{R}$ such that $\left(x^{2}+20 a x+10 b\right)\left(x^{2}+20 b x+10 a\right)=0$ has no roots for x. Prove that $20(b-a)$ is not an integer.
18. Let $A B C$ be a triangle with circumcentre O. The points P and Q are interior points of the sides $C A$ and $A B$ respectively. Let K, L and M be the midpoints of the segments $B P, C Q$ and $P Q$. respectively, and let Γ be the circle passing through K, L and M. Suppose that the line $P Q$ is tangent to the circle Γ. Prove that $O P=O Q$.
19. Let the function $f: R^{+} \rightarrow R^{+}$satisfy the following condition: $f(x) f(y)=f(x+y f(x))$.Find all of such functions.
20. A polynomial $P(x)$ with real coefficients and of degree $n \geq 3$ has n real roots $x_{1}<x_{2}<\cdots<x_{n}$ such that $x_{2}-x_{1}<x_{3}-x_{2}<\cdots<x_{n}-x_{n-1}$ Prove that the maximum value of $|P(x)|$ on the interval $\left[x_{1}, x_{n}\right]$ is attained in the interval $\left[x_{n-1}, x_{n}\right]$.
21. \diamond Two polynomials $P(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ and $Q(x)=x^{2}+p x+q$ have real coefficients, and I is an interval on the real line of length greater than 2. Suppose $P(x)$ and $Q(x)$ take negative values on I, and they take non-negative values outside I. Prove that there exists a real number x_{0} such that $P\left(x_{0}\right)<Q\left(x_{0}\right)$.
22. Call a positive integer good if either $N=1$ or N can be written as product of even number of prime numbers, not necessarily distinct. Let $P(x)=(x-a)(x-b)$, where a, b are positive integers.
(a) \diamond Show that there exist distinct positive integers a, b such that $P(1), P(2), \cdots, P(2010)$ are all good numbers.
(b) Suppose a, b are such that $P(n)$ is a good number for all positive integers n. Prove that $a=b$.
23. Find all Polynomials $P(X) \in \mathbf{R}[X]$ which satisfy $P(\sin (x))=P(\cos (x)) \forall x \in \mathbf{R}$.
