KINMOTC-Problem Sheet

Subhadip Chowdhury
bmat0917@isibang.ac.in

January 29, 2011

1. (Postal-09)Let P be an interior point of a circle and $A_{1}, A_{2}, \cdots, A_{10}$ be points on the circle such that $\angle A_{1} P A_{2}=\angle A_{2} P A_{3}=\ldots=\angle A_{10} P A_{1}=\frac{\pi}{5}$. Prove that $P A_{1}+P A_{3}+P A_{5}+P A_{7}+P A_{9}=P A_{2}+P A_{4}+P A_{6}+$ $P A_{8}+P A_{10}$.
2. (IMO 72)Prove that for each $n \geq 4$ every cyclic quadrilateral can be decomposed into n cyclic quadrilateral.
3. Let $A L$ be the angle bisector of $\angle B A C$ in $\triangle A B C,(L \in B C)$. Let N be the point where $A L$ again intersects the circumcircle of $\triangle A B C$. Let M and N be the feet of perpendiculars from L to $A B$ and $A C$. Prove that area of $\triangle A B C$ and quadrilateral $A K N M$ are equal.
4. Let $A B C$ be a triangle and O its circumcenter. Lines $A B$ and $A C$ meet the circumcircle of $O B C$ again in $B_{1} \neq B$ and $C_{1} \neq C$, respectively, lines $B A$ amd $B C$ meet the circumcircle of $O A C$ again in $A_{2} \neq A$ and $C_{2} \neq C$, respectively, and lines $C A$ and $C B$ meet the circumcircle of $O A B$ in $A_{3} \neq A$ and $B_{3} \neq B$, respectively. Prove that lines $A_{2} A_{3}, B_{1} B_{3}$ and $C_{1} C_{2}$ have a common point.
5. (IMOSL 88) Let ABC be an acute-angled triangle. Three lines L_{A}, L_{B}, and L_{C} are constructed through the vertices A, B, and C respectively according to the following prescription: Let H be the foot of the altitude drawn from the vertex A to the side $B C$; let S_{A} be the circle with diameter $A H$; let S_{A} meet the sides $A B$ and $A C$ at M and N respectively, where M and N are distinct from A; then L_{A} is the line through A perpendicular to $M N$. The lines L_{B} and L_{C} are constructed similarly. Prove that L_{A}, L_{B} , and L_{C} are concurrent.
6. Let M be the midpoint of the side AC of a triangle ABC and let H be the footpoint of the altitude from B . Let P and Q be orthogonal projections of A and C on the bisector of the angle B. Prove that the four points H,P,M and Q lie on the same circle.
7. Let $A B C$ be a triangle with $A B=A C$. Also, let $D \in[B C]$ be a point such that $B C>B D>D C>0$, and let $\mathcal{C}_{1}, \mathcal{C}_{2}$ be the circumcircles of the triangles $A B D$ and $A D C$ respectively. Let $B B^{\prime}$ and $C C^{\prime}$ be diameters in the two circles, and let M be the midpoint of $B^{\prime} C^{\prime}$. Prove that the area of the triangle $M B C$ is constant (i.e. it does not depend on the choice of the point D).
8. Let a circle intersect the three sides $B C, C A, A B$ of a triangle $A B C$ at $D_{1}, D_{2} ; E_{1}, E_{2} ; F_{1}, F_{2}$ respectively. Let $L=D_{1} E_{1} \cap D_{2} F_{2} . \mathrm{M}$ and N are similarly defined. Prove that $A L, B M, C N$ are concurrent.
9. Let the incircle of triangle ABC touch sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ at $\mathrm{D}, \mathrm{E}, \mathrm{F}$ respectively. Let AD intersect the incircle at $\mathrm{P}(\neq D)$. Let the perpendicular to AD at P and EF intersect at Q. Let DE and DF intersect AQ at X and Y respectively.Prove that $\mathrm{AX}=\mathrm{AY}$.
10. (IMOSL 91)In the triangle $A B C, \angle A=\frac{\pi}{3}$, a parallel $I F$ to $A C$ is drawn through the incenter I of the triangle, where F lies on the side $A B$. The point P on the side $B C$ is such that $3 B P=B C$. Show that $\angle B F P=\frac{\angle B}{2}$.
11. Let ABCDEF be a cyclic convex hexagon with $\mathrm{AB}=\mathrm{CD}=\mathrm{EF}$ and $A D \cap$ $B E \cap C F=Q$.Let $P=C E \cap A D$.Prove that $\frac{A C^{2}}{F D^{2}}=\frac{P C}{P E}$.
12. (IMO 93) On an infinte chessboard, a solitaire game is played as follows: At the start, we have n^{2} pieces occupying n^{2} squares that form a square of side n . The only allowed move is a jump horizontally or vertically over an occupied square to an unoccupied one, and the piece that has been jumped over is removed. For what positive integers n can the game end with only one piece remaining on the board?
13. Prove that in any convex $n-$ gon there exist 3 consequtive vertices whose circumcircle covers the whole $n-g o n$.
14. Suppose a 8×8 chessboard is covered using I-trominoes. If we are able to put 21 trominoes on it, determine all possible position for the last empty square.
15. (USAMO)Determine (with proof) whether there is a subset X of the nonnegative integers with the following property: for any natural n there is exactly one solution of $a+2 b=n$ with $a, b \in X$.
16. Suppose a fox is sitting inside a $2 n-g o n$ but not on any diagonal. 2 n hunters sitting on the vertices shoot at the fox simultaneously but the fox ducks in time and the bullet hits one of the sides of the $2 n-g o n$. Prove that there is at least one side of the $2 n-g o n$ which is not hit by any bullet.
17. At the corners of any equilateral triangle $A_{1} B_{1} C_{1}$ let there be hinged three equilateral triangles $A_{1} A_{2} A_{3}, B_{1} B_{2} B_{3}, C_{1} C_{2} C_{3}$ of any sizes and positions. Then will the midpoints of each of the sets of three segments $\left(B_{1} C_{3}, C_{1} B_{2}, B_{3} C_{2}\right),\left(A_{2} B_{1}, B_{3} A_{1}, A_{3} B_{2}\right),\left(A_{1} C_{2}, C_{1} A_{3}, A_{2} C_{3}\right)$ be the corners of an equilateral triangle?
