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§1. INTRODUCTION

Like virtually every other category, in the Topological category as well, it is important to be able to construct and classify
surfaces of least complexity mapping to a given space. The problem amounts to minimizing the genus of a surface mapping
to some space; often considered subject to further constraints. To understand why it is so, note that the second homology
of a space describes the failure of 2−cycles to bound 3−simplices. Intuitively, the rank of H2 of a space counts the number
of 2−dimensional ‘‘holes” the space has. Now consider a topological space X and let α ∈ H2(X) be an integral homology
class, represented by an integral 2-cycle A. By definition there is an expression of the form A =

∑
i niσi where ni ∈ Z and

σi’s are singular 2−simplices. Without loss of generality, allowing repetition of σi, we may assume each of the ni is ±1.
Since ∂A = 0, each face e of some σi appears an even number of times with opposite signs in

∑
i ni∂σi. Thus we may

choose a pairing of the faces of σi so that each of them contribute 0 in the sum.
We build a simplicial 2−complex K by taking one 2-simplex for each σi, and gluing the edges according to this pairing.

We thus obtain an oriented surface S and an induced continuous map fA : S → X such that by construction

(fA)∗ ([S]) = [A] = α

where [S] ∈ H2(S) is the fundamental class. Thus, elements of H2(X) are represented by maps of closed oriented surfaces
into X.
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For many applications, it is necessary to relativize the problem: given a space X and a (homologically trivial) loop γ
in X, we want to find the surface of least complexity (perhaps subject to further constraints) mapping to X in such a
way that γ is the boundary. On the algebraic side, the relevant homological tool to describe complexity in this context is
stable commutator length, which is the main topic of next section.

§2. STABLE COMMUTATOR LENGTH

� 2.1 Group theoretic Definition

Definition 2.1. Let G be a group, and a ∈ [G,G]. The commutator length of a, denoted cl(a), is the least number of
commutators in G whose product is equal to a. By convention we write cl(a) =∞ for a 6∈ [G,G].

Definition 2.2. For a ∈ [G,G], the stable commutator length, denoted by scl(a), is the following limit

scl(a) = lim
n→∞

cl(an)

n

Note that since the function n 7→ cl(an) is subadditive, the limit exists. It is easy to see that to investigate properties
of scl, it is enough to restrict to the countable subgroup generated by the element.

Definition 2.3. Let G be a group, and g1, g2, . . . , gm elements of G whose product is in [G, G]. Define

cl (g1 + . . .+ gm) = inf
hi∈G

cl
(
g1h1g2h

−1
1 . . . hm−1gmh

−1
m−1

)
and

scl (g1 + . . .+ gm) = lim
n→∞

cl (gn1 + . . .+ gnm)

n

2.1.1 Examples

� Let F2 =
〈
a, b
〉
. Then in general,

clF2
([a, b]n) =

[n
2

]
+ 1

Hence

sclF2
([a, b]) =

1

2

� For a knot γ : S1 ↪→ S3, cl(γ) = g(γ), the genus of γ where γ is regarded as an element in π1(S3\N(γ)) and N(γ) is
an open neighborhood of γ.

� scl is identically zero on [G,G] for many important class of groups G, e.g.

◦ torsion groups

◦ solvable groups, and more generally, amenable groups

◦ SL(n,Z) for n ≥ 3, and many other lattices (uniform and nonuniform) in higher rank Lie groups

� In particular, as we will see, scl vanishes identically on [G,G] if and only if every homogeneous quasimorphism on G
is a homomorphism.

� 2.2 Geometric Characterization

The properties of scl are often more clear from its geometric characterization.
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2.2.1 Fundamental group and Commutators

Let γ ∈ π1(X) be a conjugacy class represented by a loop lγ in a topological space X. If γ has a representative in the
commutator subgroup [π1(X), π1(X)], then we can find αi, βi ∈ π1(X) such that

[α1, β1] . . . [αg, βg] = γ ∈ π1(X)

Let S be a genus g surface with one boundary component, which can be obtained from a (4g + 1)−gon P by identifying
sides in pairs. We use the ‘standard’ representation of

π1(S) =
〈
a1, b1, . . . , ag, bg | [a1, b1] . . . [ag, bg]

〉
to define maps from the edges of P to loops in X to get that loops corresponding to elements of [π1(X), π1(X)] are
boundaries of maps of oriented surfaces into X.

Given a group G, consider a topological space such that π1(X) = G. It follows that the commutator length of an
element a ∈ G is the least genus of a surface with one boundary component mapping to X in such a way that the boundary
represents the free homotopy class of a loop γ corresponding to a ∈ π1(X). Then the stable commutator length can be
calculated by considering genus of surfaces whose boundary wraps around γ multiple times.

2.2.2 scl as an intrinsic geometric property

Definition 2.4. Given a compact oriented surface S, let −χ−(S) denote the sum of the max{−χ(.), 0} over the connected
components of S.

Let g1, . . . , gm ∈ G be given so that the product is trivial in H1(G;Q). Let X be a space with π1(X) = G and let
γi : S1 → X be nontrivial free homotopy classes of loops representing the conjugacy class of gi. For a compact oriented
surface S, we say that a map f : S → X is admissible of degree n(S) if the following diagram commutes:

∂S S

∐
i

S1 X

i

∂f f∐
i
γi

and

∂f∗[∂S] = n(S)

[∐
i

S1

]
.

We can now give an intrinsic geometric definition of scl.

Proposition 2.5. With notations as above,

scl(g1 + . . .+ gm) = inf
S

−χ−(S)

2n(S)

where the infimum is taken over all admissible maps as above.

Definition 2.6. The chain g1 + · · ·+ gm is said to rationally bound a surface S is f : S → X is admissible. Such a surface

is extremal if every component has negative Euler characteristic and it realizes the infimum of −χ
−(S)

2n(S) .

Extremal surfaces are π1−injective. The following proposition tells us what kind of admissible surfaces are enough to
consider. By passing to a suitable cover and gluing together boundary components mapping with opposite degree to the
same circle, we can prove,

Proposition 2.7. Let S be connected with χ(S) < 0, and let f : S, ∂S → X, γ be admissible. Then there is an admissible
map f ′ : S′, ∂S′ → X, γ with positive degree on every component of ∂S′ such that

−χ−(S′)

2n(S′)
≤ −χ

−(S)

2n(S)
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2.2.3 Examples

The following examples highlights the usefulness of the geometric characterization in explicit calculation of scl.

� We know that there is no map of nontrivial degree from a surface of genus g to a surface of genus h > g. It follows
from the fact that if you have a map from lower genus to higher, there is an element a in the kernel of the induced
map on first cohomology (say over Q) and so the fundamental class a ^ b (for some b, by Poincaré duality) goes to

zero (by naturality of cup product). Thus given a surface X = Σg of genus g ≥ 1 the infimum of −χ
−(S)

2n(S) is equal to

−χ−(Σg)/2.

� Suppose G obeys a law. Then the stable commutator length vanishes identically on [G,G].

� 2.3 Functional Analytic Characterization

Aside from above two characterizations, we can also give a functional theoretic characterization of scl. By Bavard duality
theorem 2.13 we can define scl dually in terms of certain kind of functions on groups, namely quasimorphisms and bounded
cohomology of the group.

2.3.1 Quasimorphisms

Definition 2.8. Let G be a group. A quasimorphism is a function ϕ : G → R for which there exists a least constant
D(ϕ) ≥ 0 such that

|ϕ(ab)− ϕ(a)− ϕ(b)| ≤ D(ϕ)

for all a, b ∈ G. D(ϕ) is called the defect of ϕ.

Clearly any bounded function is trivially a quasimorphism.

� Homogenization:

Definition 2.9. A quasimorphism is homogeneous if ϕ(an) = nϕ(a) for all a ∈ G,n ∈ Z. We denote the vector space of
all homogeneous quasimorphisms on G by Q(G).

Lemma 2.10. For a quasimorphism ϕ on G, the limit

ϕ(a) := lim
n→∞

ϕ(an)

n

exists and defines a homogeneous quasimorphism ϕ.

Proof. (Sketch) Note that ϕ(a2
i

)2−i is a Cauchy sequence. Then to prove homogeneity, use triangle inequality and
induction.

� Commutator estimates: If ϕ is homogeneous then

∣∣ϕ(aba−1)− ϕ(b)
∣∣ =

1

n

∣∣ϕ(abna−1)− ϕ(bn)
∣∣ ≤ 2D(ϕ)

n

which implies ϕ is a class function. Thus

D(ϕ) ≥ |ϕ([a, b])− ϕ(aba−1)− ϕ(b−1)| = |ϕ([a, b])− ϕ(b) + ϕ(b)| = |ϕ([a, b])| (2.3.1.1)

It turns out that

Lemma 2.11 (Bavard,[3]). Let ϕ be a homogeneous quasimorphism on G. Then there is an equality

sup
a,b
|ϕ([a, b])| = D(ϕ)

4
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2.3.2 Bounded Cohomology

Definition 2.12. The bar complex C∗(G) of a group G is the complex generated in dimension n by n−tuples (g1, . . . , gn)
with gi ∈ G and with boundary map ∂ defined by the formula

∂(g1, . . . , gn) = (g2, . . . , gn) +

n−1∑
i=1

(−1)i(g1, . . . , gigi+1, . . . , gn) + (−1)n(g1, . . . , gn−1).

For a coefficient group R, we let C∗(G;R) denote the dual cochain complex hom(C∗(G), R), and let δ denote adjoint of
∂. The homology groups of C∗(G;R) are called the group cohomology of G with coefficients in R, and are denoted by
H∗(G;R).

If R is a subgroup of R, a cochain α ∈ Cn(G) is bounded if sup |α(g1, . . . , gn)| is finite, where the supremum is taken
over all generators. This supremum is called the norm of α, denoted by ‖α‖∞. The set of all bounded cochains forms a
subcomplex C∗b (G) of C∗(G), and its homology is called the bounded cohomology H∗b (G).

A real valued function ϕ on G may be thought of as a 1−cochain, i.e. an element of C1(G;R). The coboundary δ of
such a function is defined by the formula

δϕ(a, b) = ϕ(a) + ϕ(b)− ϕ(ab)

At the level of norms, there is an equality ‖δϕ‖∞ = D(ϕ). Hence the coboundary of a quasimorphism is a bounded
2−cocycle. Two 1−cochains have the same image in H2

b under δ iff they differ by a bounded function. But if two
quasimorphisms differ by a bounded function, under homogenization they give the same quasimorphism. It follows that we
have an exact sequence

0→ H1(G;R)→ Q(G)
δ→ H2

b (G;R)→ H2(G;R) (2.3.2.1)

Let Bn(G;R) denote the subspace of real group n−boundaries. Then using definition 2.3, we can think of scl as a
function on the set of integral group 1−boundaries. This function being linear on rays and subadditive, admits a unique
continuous linear extension to B1(G). Let H(G) denote the subspace of B1(G) spanned by chains of the form g − hgh−1
and gn − ng for g, h ∈ G and n ∈ Z. Thus by construction, scl descends to a pseudo-norm on B1

H := B1(G)/H(G). Using
the following theorem, we can show that scl is a genuine norm on BH1 (G) for a hyperbolic group G.

2.3.3 Bavard’s Duality Theorem

We relate quasimorphisms and stable commutator length via the following theorem:

Theorem 2.13 (Bavard’s Duality Theorem,[3]). Let G be a group. Then for any
∑
i tiai ∈ B1(G), we have an equality

scl

(∑
i

tiai

)
=

1

2

(
sup

ϕ∈Q/H1

∑
i tiϕ(ai)

D(ϕ)

)

Proof. (Sketch) We can prove that the dual of B1(G) with the Gersten boundary norm ‖.‖b is Q̂/H1 with D(.) norm.
Also for any linear chain

∑
i tiai ∈ B1, scl (

∑
i tiai) = 1

4 fill (
∑
i tiai), where fill(.) is the homogenization of ‖.‖b. The result

then follows directly by an application of Hahn-Banach theorem.

We see that scl is a kind of relative Gromov-Thurston norm. In fact they are related and the unit norm balls satisfy
similar properties.

� 2.4 The Rationality Theorem for scl in Free Groups

We are going to see that the unit scl norm ball in B1
H(F ) for a free group F is a rational polyhedron. We briefly mention

the other best known example of polyhedral norm here and relate it to scl.

Theorem 2.14 (Thurston,[11]). Let M be a compact oriented 3-manifold (For simplicity we assume ∂M is empty).
Define the Thurston norm η on the integral lattice of H2(M) by

η(a) = inf{−χ−(S)|S is an embedded surface representing a}

Then,

5
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1. Using linearity and sub-additivity, the definition can be extended to define a pseudo-norm on H2(M ;R) such that it
is convex and linear on rays through the origin.

2. The unit ball Bη∗ is a polyhedron with vertices at even lattice points ±β1, . . . , βk and Bη is a polyhedron defined by
linear inequalities with integer coefficients

Bη = {a | |a.βi| ≤ 1, 1 ≤ i ≤ k }

We can relate the Thurston and Gromov norm by the proportionality theorem of Gabai which states that the Thurston
norm η is exactly the half of Gromov norm ‖.‖1. This follows from the fact that a surface is Thurston norm minimizing iff
it is a compact leaf of a taut foliation. Using the proportionality theorem we can deduce

Theorem 2.15 ([5]). Let M be a compact oriented 3−manifold. Let γ ⊂ ∂M be an embedded, oriented loop. Let a be
the conjugacy class in π1(M) represented by γ. Suppose a ∈ [π1(M), π1(M)]. Then scl(a) ∈ Q.

Proof. (Sketch) Let N be obtained by doubling M along a regular annulus neighborhood A of γ. Let V ⊂ H2(N) be the
integral affine subspace V = ∂−1([γ]) where [γ] ∈ H1(A) is the generator. Then we can prove that

scl(a) =
1

4
fill(a) =

1

8
inf
v∈V
‖v‖1 =

1

4
inf
v∈V

η(v)

Using the theory of branched surfaces, we can prove the Rationality Theorem which shows how scl has similar properties
as Gromov-Thurston norm.

Theorem 2.16 (Calegari,[5]). Let F be a free group. Then

1. scl(g) ∈ Q for all g ∈ [F, F ].

2. Every g ∈ [F, F ] bounds an extremal surface.

3. The function scl is a piecewise linear norm on BH1 (F ).

4. Every nonzero finite rational linear chain A ∈ BH1 (F ) projectively bounds an extremal surface.

5. There is an algorithm to calculate scl on any finite dimensional rational subspace of BH1 (F ), and to construct all
extremal surfaces in a given projective class.

The Rationality theorem enables us to relate scl to rotation and area quasimorphisms defined on arbitrary oriented
surface with boundary, which we do in the next section.

§3. MORE EXAMPLES OF QUASIMORPHISMS

Quasimorphisms arise from hyperbolic geometry (negative curvature) and symplectic geometry (causal structures). We
first look at the bounded area co-cycle appearing in hyperbolic geometry and the associated quasimorphisms. Then we
discuss the famous rotation number quasimorphism and how it is related to scl. Finally we will consider quasimorphisms
appearing in Symplectic geometry, namely the symplectic translation number.

� 3.1 de Rham quasimorphisms

Let M be a closed hyperbolic manifold, and let α be a 1-form. Define a quasimorphism qα : π1(M)→ R as follows. Choose
a base point p ∈M . For each γ ∈ π1(M), let Lγ be the unique oriented geodesic arc with both endpoints at p which as a
based loop represents γ in π1(M). Then define

qα(γ) =

∫
Lγ

α

If γ1, γ2 are two elements of π1(M), there is a geodesic triangle T whose oriented boundary is the union of Lγ1 , Lγ2 , Lγ−1
2 γ−1

1
.

Then by Stokes’ theorem and Gauss-Bonnet theorem, we have

qα(γ1) + qα(γ2)− qα(γ1γ2) =

∫
T

dα =⇒ D(qα) ≤ π.‖dα‖

6
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Note that the homogenization qα satisfies

qα(γ) =

∫
lγ

α

where lγ is the free geodesic loop corresponding to the conjugacy class of γ in π1(M). For, changing the base point p
changes qα by a bounded amount, and therefore does not change the homogenization.

In general the cohomology class of the volume cocycle of a hyperbolic n−manifold is bounded. We next describe the
idea of Straightening chains (originally, due to Thurston) and formalize the construction of the quasimorphisms.

� 3.2 Straightening Chains

Definition 3.1. Let M be a hyperbolic m−manifold, σ : ∆n →M be a singular n−simplex. Define straightening σg of σ
as follows. First lift σ to a map from ∆n → Hm, denote it by σ̃.

Let v0, . . . , vn denote the vertices of ∆n. Consider the hyperboloid model

Hm = {xm+1 > 0 : x21 + . . . x2m − x2m+1 = −1}

For v =
∑
i tivi ∈ ∆n (barycentric coordinates), define

σ̃g(v) =

∑
tiσ̃(vi)

−‖
∑
tiσ̃(vi)‖

and σg = p ◦ σ̃g. Intuitively, it is the projection of the convex hull of {v0, . . . , vn}.
Define

str : C∗(M)→ C∗(M)

by setting str(σ) = σg and extending by linearity. By composing a linear homotopy in Rm+1 with radial projection to the
hyperboloid, we see that there is a chain homotopy between str and Id.

Lemma 3.2. vk = supV ol(σ) over all geodesic simplices σ : ∆k → Hn is finite for k 6= 1.

Note 3.3. Haagerup-Munkholm proved that vk is the volume of a regular ideal simplex.

Now consider a closed hyperbolic manifold M . We know that the natural inclusion induces a homomorphism from
Hn
b (M ;R) to Hn(M ;R) for n ≥ 2. Using straightening of chains and the fact that str and Id are homotopic we find

that the homomorphisms is in fact a surjection i.e. every cohomology class of dimension n is in the image of a bounded
cohomology class of dimension n. In the case n = 2, by the exact sequence 2.3.2.1 we find that an element of H2

b (M ;R)
whose image in H2(M ;R) is trivial must be in the image of an element of Q(π1(M)). Thus we can produce nontrivial
quasimorphisms on M .

� 3.3 Rotation Number

Let Homeo(S1) denote the group of homeomorphisms of the circle, and let Homeo+(S1) be its orientation preserving

subgroup. Let G be a subgroup of Homeo+(S1). Let G̃ be the preimage of G in Homeo+(R) under the covering projection

R→ S1. Note that G̃ is a central extension of G so that we have an exact sequence

0→ Z→ G̃→ G→ 1

Definition 3.4 (Poincaré). Given g ∈ G̃, define the rotation number of g to be

rot(g) = lim
n→∞

gn(0)

n

The rotation number of an element ϕ ∈ G is defined to be rot(ϕ̃) mod Z, where ϕ̃ is a lift of ϕ in G̃.

Lemma 3.5. rot is a quasimorphism on G̃.

Proof. Given arbitrary a, b, write a = Zna′, b = Zmb′ where 0 ≤ a′(0), b′(0) < 1. Then ab = Zm+na′b′ and hence

rot(a) + rot(b)− rot(ab) = n+ rot(a′) +m+ rot(b′)−m− n− rot(a′b′)⇒ D(rot) ≤ 2

7
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In fact we can prove more precisely that

Lemma 3.6. For all p ∈ R and a, b ∈ G̃, there is an inequality

p− 2 < [a, b]p < p+ 2

Thus it follows that scl(a) ≥ |rot(a)|2 for any a ∈ G̃. In fact we have an equality.

Theorem 3.7. Let ˜Homeo+(S1) denote the set consisting of all possible lifts of elements in Homeo+(S1) under the
covering projection R→ S1. Then

scl(a) =
|rot(a)|

2
for all a ∈ ˜Homeo+(S1).

Before proving the theorem, we need to introduce the following definition.

Definition 3.8. A group is called uniformly perfect if every element can be written as a product of bounded number of
commutators.

Observe that any quasimorphism on a uniformly perfect group is bounded which easily follows from estimate 2.3.1.1.
Consequently, for any uniformly perfect group Γ, the canonical maps H2

b (Γ,R)→ H2(Γ,R) and H2
b (Γ,Z)→ H2

b (Γ,R) are
injective. Thus for uniformly perfect groups, the usual Euler class in H2(Γ,Z) determines the bounded Euler class. By
a theorem proved by Eisenbud, Hirsch and Neumann in [8], we can prove that Homeo+(S1) is uniformly perfect; every
element can be written as a commutator. Then the proof of theorem 3.7 follows from the following two lemmas.

Lemma 3.9. rot : ˜Homeo+(S1)→ R is the unique homogeneous quasimorphism which sends the unit translation to 1.

Proof. Suppose τ ∈ Q( ˜Homeo+(S1)) is another such map, then we consider

r = rot− τ : ˜Homeo+(S1)→ R

which is also a homogeneous quasimorphism, and since any homogeneous quasimorphism on abelian groups, specifically
Z⊕ Z, must be a homomorphism, we have r(f1) = r(f2), if f1 and f2 descend to the same function in Homeo+(S1). Thus
it induces a homogeneous quasimorphism r on Homeo+(S1). But r is bounded on Homeo+(S1) by above discussion. Since
it’s homogeneous, it must be the zero map, i.e. rot = τ .

It can be proved using Bavard’s lemma 2.11 that

Lemma 3.10 ([12]). D(rot) = 1.

Proof of Theorem 3.7. Observe that for G = ˜Homeo+(S1), we have dimR(Q(G)) = 1. Then lemma 3.9 and lemma 3.10
together, along with Bavard’s duality theorem 2.13, imply theorem 3.7.

We can similarly define a rotation number on the group PSL(2,R) ⊆ Homeo+(S1), when it is considered to be acting
on the circle at infinity of hyperbolic space. In fact, for a compact oriented hyperbolic surface S and a discrete faithful
representation ρ : π1(S)→ PSL(2,R) we can pull back the rotation number by ρ̃ to define a function rotS on π1(S). Here

ρ̃ is a lift of ρ to S̃L(2,R) ⊂ Homeo+(R). Since different lifts are classified by elements of H1(S;Z), rotS is well defined
on the commutator subgroup of π1(S) independent of choice of ρ̃. The following lemma says that the algebraic area of a
geodesic is actually a rotation number.

Lemma 3.11. If g ∈ [π1(S), π1(S)] be represented by a geodesic γ ⊂ S. Then

area(γ) = −2π.rotS(g)

Proof. (Sketch) Let f ; (S′, ∂S′)→ (S, γ) be a pleated surface with n(S′) = 1. Then

area(γ)

2π
= e (f∗[S

′]) = −(δ rotS) (f∗[S
′]) = −rotS (f∗[∂S

′]) = −rotS(g)

where [e] = −[δ rotS ] ∈ H2
b (π1(S);R) is the Euler class.

8



Stable Commutator Length and Quasimorphisms Topic Proposal

In general if a chain C =
∑
tiai in BH1 (F ) is represented by a ‘weighted’ union Γ of geodesics then area(Γ) =

−2π
∑
tirotS(ai). Then using Bavard Duality theorem 2.13 and Rationality theorem 2.16 we can relate scl and rotS as

follows:

Theorem 3.12 ([5]). Let S be a oriented hyperbolic surface with boundary. Let C be a rational chain in BH1 (S) represented
by a weighted sum of geodesics Γ. Then Γ rationally bounds a (positive or negative) immersed subsurface S if and only if

scl(C) =
|rotS(C)|

2

i.e. rotS is an extremal quasimorphism for C.

In the next section, we try to generalize this notion of rotation quasimorphisms to Symplectic groups.

S̃p(2n,R) ˜Homeo+(S1) Sp(2n,R) Homeo+(S1)

0 Z 1

P̃SL(2,R) PSL(2,R)

R R/Z
rot rot

� 3.4 Quasimorphism arising from Symplectic Geometry

We equip R2n with the coordinates {q1, . . . , qn, p1, . . . , pn} and consider the symplectic form ω on R2n defined by

ω ((qα, pα), (q′α, p
′
α)) =

n∑
α=1

det

[
qα q′α
pα p′α

]
The Symplectic group Sp(2n,R) is the group of linear automorphisms of R2n which preserve ω. The quotient of Sp(2n,R)
by the center {±Id} is denoted by PSp(2n,R).

3.4.1 Quasimorphisms on S̃p(2n,R) and Maslov Class

Proposition 3.13. Sp(2n,R) is uniformly perfect.

Proof. For a ∈ R2n, we consider the linear map τa defined for any x ∈ R2n by

τa(x) = x+ ω(x, a)a

The maps τa are called symplectic transvections. Let g ∈ Sp(2n,R) be such that g(a) =
√

2.a. Then

τa = (τa)2τ−1a = τ√2.a.τ
−1
a = gτag

−1τ−1a

Thus τa is a commutator. The proposition then follows from the fact that any element of Sp(2n,R) is the product of at
most 2n elements of type τ±1a ([7]).

Definition 3.14. A n−dimensional subspace L of R2n is called a Lagrangian if the restriction of ω to L×L is identically
zero. We denote the space of all Lagrangian subspaces of R2n, called the Lagrangian grassmannian, by Λn.

Clearly, PSp(2n,R) acts on Λn. One can identify R2n with Cn via the coordinates zα = qα + ipα(α = 1, . . . , n). Then
the Unitary group U(n) which preserves the standard hermitian form

∑
zαzα can be though of as a subspace of Sp(2n,R).

It turns out that U(n) acts transitively on Λn and the stabilizer of this action is the orthogonal group O(n). Thus we can
identify

Λn ∼= U(n)/O(n)

The square of the determinant map d = det2 defines a fibration

d = det2 : Λn = U(n)/O(n)→ S1 ⊂ C∗, L = A(Rn) 7→ det(A)2

Each fiber is diffeomorphic to SU(n)/SO(n) and is simply connected.
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Proposition 3.15. The fibration induces an isomorphism at the level of fundamental groups. Thus the fundamental group
of the Lagrangian grassmannian is infinite cyclic.

Proof. (Sketch) The proof follows from the homotopy exact sequence of the commutative diagram of fiber bundles

SO(n) O(n) O(1) = S0

SU(n) U(n) U(1) = S1

SΛn Λn Λ1 = S1

det

det

z 7→z2

d=det2

Hence

0 π1(U(n)/O(n)) π1(S1) 0
d∗
∼=

Corollary 3.16. H1(Λn) is infinite cyclic.

Let π : Λ̃n → Λn be the universal cover of Λn. Let S̃p(2n,R) be the subgroup of homeomorphisms of Λ̃n which descend
to action of PSp(2n,R) on Λn. We have an exact sequence

0→ Z→ S̃p(2n,R)→ PSp(2n,R)→ 1

It turns out that S̃p(2n,R) is the universal cover of PSp(2n,R). The cohomology class in H2(PSp(2n,R);Z) that defines
this extension is defined to be the Maslov class.

In the case n = 1, when we have
0→ Z→ S̃L(2,R)→ PSL(2,R)→ 1

the Maslov class turns out to be the same as the Euler class and Λ1 becomes a circle. The quasimorphisms on S̃L(2,R)
come mainly from the choice of fundamental domain for the action of integer translations. In the remaining part of this
section, we talk about ways to generalize the quasimorphisms.

First Method: Let L be the lagrangian Rn × {0} and L̃ be its lift in Λ̃n. Let d̃ = d̃et
2

: Λ̃n → R be a lift of d such that

d̃(L̃) = 0. We define the function Φdet on S̃p(2n,R) by

Φdet(g̃) = d̃et
2
(g̃(L̃) ∈ R

We can prove that,

Proposition 3.17 ([2]). Φdet is an quasimorphism.

The bounded 2−cocycle cdet defined on PSp(2n,R) by

cdet(g1, g2) = Φdet(g̃1g̃2)− Φdet(g̃1)− Φdet(g̃2)

represents the Maslov class. By replacing Φdet by its integer part, we obtain an integer 2−cocycle also representing the
Maslov class and having values less that n+ 1.

Second Method: Another method of determining an 2−cocycle representing the Maslov class was given by Arnold[1].
Let α ∈ Λn be a Lagrangian.

Definition 3.18. The train of α, denoted t(α) is the set of all Lagrangian planes which are not transverse to α. α is
called the vertex of the train t(α).
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Every train is a codimension 1 subvariety in Λn, whose singularities form a set of codimension 2 in the train. In
a neighborhood of the point α of t(α), the elements of Λn correspond to quadratic forms with the elements of t(α)
corresponding to degenerate ones. Consequently, t(α) divides the neighborhood of the vertex into (2n + 1) disjoint
subsets corresponding to the signature of the quadratic form. In particular, in the neighborhood of the vertex, there is a
distinguished ‘‘positive’’ domain whose corresponding quadratic forms are positive definite. The field of such domains as α
varies defines a causal structure on Λn.

Definition 3.19. If γ : [0, 1]→ Λn is a 1−parameter family of Lagrangian subspaces, with γ(0) = α and γ(1) = β, then
the Maslov index of γ is the algebraic intersection number of a path starting at α and ending at a point β′ lying in the
‘positive’ domain near β, with the train of α.

The homotopy class of a path joining α and β can be represented by a pair of points α̃ and β̃ in Λ̃n. We denote the
Maslov index of such a path by m(α̃, β̃). If T denotes the generator of the action of the deck group Z on Λ̃n, then we have
the formula:

m(T α̃, β̃) = m(α̃, β̃) + 1

This is clear because the path corresponding to (T α̃, β̃) is obtained from the path corresponding to (α̃, β̃) by adding a loop

whose intersection number with the train of the plane π(β̃) equals 1.

Definition 3.20. For each pair α, β of transverse Lagrangian plane in (R2n, ω), we consider the adjoined quadratic form
Φ[α, β] in R2n, whose value on any vector ζ is defined by

Φ[α, β](ζ) = ω(z1, z2) where ζ = z1 + z2, z1 ∈ α, z2 ∈ β

It is easy to see that Φ is symmetric. Φ and the Maslov index are related via the following relation.

Definition 3.21. The index I(α, β, γ) of the triplet of Lagrangians α, β, γ is the signature of the restriction of the form
Φ[α, β] to γ.

Then we can write,
I(π(α̃), π(β̃), π(γ̃)) = m(α̃, β̃) +m(β̃, γ̃) +m(γ̃, α̃)− n

for any α̃, β̃, γ̃ in Λ̃n. We define the Arnold-Maslov function

ΦAM : g̃ ∈ S̃p(2n,R) 7→ m(g̃(L̃), L̃)

where L = Rn × {0} as defined in last section. The associated cocycle cAM for PSp(2n,R) defined by

cAM (g1, g2) = ΦAM (g̃1g̃2)− ΦAM (g̃1)− ΦAM (g̃2) = I(L, g1(L), g1g2(L))− n

is then the Maslov class.

Proposition 3.22. ΦAM is a quasimorphism.

Proof. This follows from the fact that the index I is bounded by 2n.

Corollary 3.23. The defects of Φdet and ΦAM are different.

3.4.2 Symplectic Rotation Number

Definition 3.24. The symplectic rotation number of an element g̃ of S̃p(2n,R) is defined by

rot(g̃) = lim
n→∞

Φdet(g̃
n)

n
= lim
n→∞

ΦAM (g̃n)

n

and it descends to a symplectic rotation number of an element π(g̃) = g ∈ PSp(2n,R) by

rot(g) = rot(g̃) mod Z
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