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Abstract. We give explicit formulae for fringe lengths of the Calegari–Walker ziggurats—
i.e., graphs of extremal rotation numbers associated with positive words in free groups.
These formulae reveal (partial) integral projective self-similarity in ziggurat fringes, which
are low-dimensional projections of characteristic polyhedra on the bounded cohomology
of free groups. This explains phenomena observed experimentally by Gordenko, Calegari
and Walker.

1. Introduction
Let Homeo∼+(S

1) denote the group of homeomorphisms of the real line that commute
with integer translation, and let rot∼ : Homeo∼+(S

1)→ R denote Poincaré’s (real-valued)
rotation number, also known as translation number. Let F be a free group on two generators
a, b and let w be a word in the semigroup generated by a and b (such a w ∈ F is said
to be positive). Let ha(w) and hb(w) be the number of a and b in w, respectively. The
fringe associated with w and a rational number 0≤ p/q < 1 is the set of 0≤ t < 1 for
which there is a homomorphism from F to Homeo∼+(S

1) with rot∼(a)= p/q, rot∼(b)= t
and rot∼(w)= ha(w)p/q + hb(w). Calegari and Walker [4] show that there is some least
rational number s ∈ [0, 1) so that the fringe associated with w and with p/q is equal to the
interval [s, 1). The fringe length, denoted frw(p/q), is equal to 1− s.

The main theorem that we prove in this paper is an explicit formula for fringe length.

Fringe Formula 1.3. If w is positive, and p/q is a reduced fraction, then

frw(p/q)=
1

σw(g) · q

where σw(g) depends on the word w and on g := gcd(q, ha(w)). Furthermore, g · σw(g)
is an integer.

As t→ 1, the dynamics of F on S1 are approximated more and more closely by a
linear model, as explained below by Theorem 1.2. For t close to 1, the nonlinearity can
be characterized by a perturbative model; fringes are the maximal regions where this
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perturbative model is valid. Our main theorem says that the size of this region of stability
follows a power law. This is a new example of (topological) nonlinear phase locking in
1-dimensional dynamics giving rise to a power law, of which the most famous example is
the phenomenon of Arnol’d Tongues [5].

1.1. Motivation. If G is a Lie group, and 0 is a finitely generated group, one studies
representations of 0 into G up to conjugacy, not by looking at the quotient space
Hom(0, G)/G (which is usually non-Hausdorff), but by taking a further (maximal)
quotient on which certain natural functions—characters—are continuous and well-defined
(i.e., one studies character varieties).

Recovering a representation from a character is not always straightforward. Given a
(finite) subset S of 0, it becomes an interesting and subtle question to ask what constraints
are satisfied by the values of a character on S. For example, the (multiplicative) Horn
problem poses the problem of determining the possible values of the spectrum of the
product AB of two unitary matrices given the spectra of A and B individually. There is
a map

3 : SU (n)× SU (n)→ R3n

taking A, B to the logarithms of the spectra of A, B and AB (suitably normalized).
Agnihotri and Woodward [1] and Belkale [2] proved that the image is a convex polytope,
and explicitly described the image.

When G is replaced by a topological group such as Homeo∼+(S
1) (the group of

orientation-preserving homeomorphisms of the circle), the situation becomes more
complicated. Recall that the translation number

rot∼ : Homeo∼+(S
1)→ R

is constant on conjugacy classes (more precisely, on semi-conjugacy classes: see, for
example, [6] or [3] and §2.1 for more details) and can be thought of as the analog of a
character in this context. Following Calegari and Walker [4] we would like to understand
what constraints are simultaneously satisfied by the value of rot∼ on the image of a
finite subset of 0 under a homomorphism to Homeo∼+(S

1). That is, we study the values
xi := rot∼(ρ(wi )) for a finite number of wi ∈ 0 on a common representation ρ.

1.2. Free groups, positive words and ziggurats. The universal case to understand is
that of a free group. For simplicity, we consider the case of a rank 2 free group. Thus,
let F be a free group with generators a, b, and for any element w ∈ F let xw be the
function from conjugacy classes of representations ρ : F→ Homeo∼+(S

1) to R which
sends a representation ρ to xw(ρ) := rot∼(ρ(w)). The xw are coordinates on the space
of conjugacy classes of representations, and we study this space through its projections to
finite dimensional spaces obtained from a finite number of these coordinates.

For any w ∈ F and for any r, s ∈ R we can define

X (w; r, s)= {xw(ρ) | xa(ρ)= r, xb(ρ)= s}.

Then X (w; r, s) is a compact interval (see [4]) (i.e., the extrema are achieved) and it
satisfies X (w; r + m, s + n)= X (w; r, s)+ mha(w)+ nhb(w), where ha, hb : F→ Z
count the signed number of copies of a and b respectively in each word.
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If we define R(w; r, s)=max{X (w; r, s)}, then min{X (w; r, s)} = −R(w; −r,−s).
So all the information about X (w; r, s) can be recovered from the function R(w; · , ·) :
R2
→ R. In fact, by the observations made above, it suffices to restrict the domain of R to

the unit square [0, 1)× [0, 1).

The theory developed in [4] is most useful when w is a positive word (i.e., a word in the
semigroup generated by a and b). In this case, R(w; r, s) is lower semi-continuous, and
monotone non-decreasing in both its arguments. Furthermore, it is locally constant and
takes rational values on an open and dense subset of R2. In fact, we have the following.

THEOREM 1.1. [4, Theorems 3.4, 3.7] Suppose w is positive (and not a power of a or b),
and suppose r and s are rational. Then:

(1) R(w; r, s) is rational with denominator no bigger than the smallest of the
denominators of r and s; and

(2) there is some ε(r, s) > 0 so that R(w; · , ·) is constant on [r, r + ε)× [s, s × ε).

Furthermore, when r and s are rational and w is positive, Calegari and Walker [4]
give an explicit combinatorial algorithm to compute R(w; r, s); it is the existence and
properties of this algorithm that proves Theorem 1.1. Computer implementation of this
algorithm allows one to draw pictures of the graph of R (restricted to [0, 1)× [0, 1)) for
certain short words w, producing a stairstep structure dubbed a Ziggurat (see Figure 1).

In the special case of the wordw = ab, a complete analysis can be made, and an explicit
formula obtained for R(ab; · , ·) (this case arose earlier in the context of the classification
of taut foliations of Seifert fibered spaces, where the formula was conjectured by Jankins
and Neumann [8] and proved by Naimi [10]). But in no other case is any explicit formula
known or even conjectured, and even the computation of R(w; r, s) takes time which is an
exponential function of the denominators of r and s.

1.3. Projective self-similarity and fringes. In a recent preprint, Gordenko [7] gave a
new analysis and interpretation of the ab formula, relating it to the Naimi formula in
an unexpected way. Her formulation exhibits and explains an integral projective self-
similarity of the ab-ziggurat, related to the theory of continued fractions, and the fact that
the automorphism group of F2 is SL(2, Z). Such global self-similarity is (unfortunately)
not evident in ziggurats associated with other positive words; but there is a partial self-
similarity (observed experimentally by Calegari and Walker [4] and by Gordenko [7]) in
the germ of the ziggurats near the fringes where one of the coordinates r or s approaches
1 from below.

If we fix a positive word w and a rational number r , and (following [4]) we denote by
R(w; r, 1−) the limit of R(w; r, t) as t→ 1 from below, then the following can be proved.

THEOREM 1.2. [4, Proposition 3.15] If w is positive and r is rational, there is a least
rational number s ∈ [0, 1) so that R(w; r, t) is constant on the interval [s, 1) and equal to
R(w; r, 1−)= ha(w)r + hb(w).
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FIGURE 1. Graph of R(abbbabaaaabbabb; · , ·): colloquially, a ziggurat. Picture courtesy of Calegari
and Walker [4].

We refer to the rational number 1− s as in Theorem 1.2 (depending on the word w and
the rational number r ) as the fringe length of r , and denote it by frw(r), or just by fr(r)
if w is understood. In other words, frw(r) is the greatest number such that R(w; r, 1−
frw(r))= ha(w)r + hb(w). More precisely, we should call this a ‘left fringe’, where the
right fringe should be the analog with the roles of the generators a and b interchanged.

1.4. Statement of results. Section 2 summarizes background, including some elements
from the theory of ziggurats from [4]. The most important ingredient is a description of
the stairstep algorithm.

In §3 we undertake an analysis of the stairstep algorithm when applied to the
computation of fringe lengths. A number of remarkable simplifications emerge which
allows us to reduce the analysis to a tractable combinatorial problem which depends (in a
complicated way) only on gcd(q, ha(w)).

Our main theorem gives an explicit formula for frw for any positive word w, and
establishes a (partial) integral projective self-similarity for a fringe. Thus, it gives a
theoretical basis for the experimental observations of Calegari and Walker [4] and
Gordenko [7].



Ziggurat fringes are self-similar 743

THEOREM 1.3. (Fringe formula) If w is positive and p/q is a reduced fraction, then

frw(p/q)=
1

σw(g) · q
,

where σw(g) depends only on the word w and g := gcd(q, ha(w)); and g · σ(q) is an
integer.

The function σw(g) depends on w and on q in a complicated way, but there are some
special cases which are easy to understand. In §4 we prove the following inequality.

THEOREM 1.4. (σ -inequality) Suppose w = aα1bβ1aα2bβ2 · · · aαn bβn . Then the function
σw(g) satisfies the inequality

hb(w)

ha(w)
≤ σw(g)≤max βi .

Moreover, hb(w)/ha(w)= σw(g) when ha(w) divides q, and σw(g)=max βi when q and
ha(w) are coprime.

The fringe formula explains the fact that frw(p/q) is independent of p (for gcd(p, q)=
1) and implies a periodicity of frw on an infinite number of scales. More precise statements
are found in §5.

2. Background
2.1. Rotation numbers. Consider the central extension

0→ Z→ Homeo∼+(S
1)→ Homeo+(S1)→ 0,

which has center generated by unit translation z : p→ p + 1.
Poincaré defined the rotation number rot : Homeo+(S1)→ R/Z as

rot( f )= lim
n→∞

f̃ n(0)
n

(mod Z),

where f̃ is a lift of f in Homeo∼+(S
1). More generally, if g ∈ Homeo∼+(S

1) is a
homeomorphism of the real line commuting with integer translations, its translation
number rot∼ : Homeo∼+(S

1)→ R is defined as

rot∼(g)= lim
n→∞

gn(0)
n

.

Since rot∼(gzn)= rot∼(g)+ n for any integer n, we get that rot∼ descends to a well-
defined function rot : Homeo+(S1)→ R/Z.

Recall that, for F a free group generated by a, b, for any w ∈ F and for any
numbers r, s ∈ R, we define R(w; r, s) to be the maximum value of rot∼(ρ(w)) under
all homomorphisms ρ : F→ Homeo∼+(S

1) for which rot∼(ρ(a))= r and rot∼(ρ(b))= s.
The maximum is achieved on some representation ρ for any fixed r and s [4, Lemma 2.13],
but the function R(w; ·, ·) is typically not continuous in either r or s.
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FIGURE 2. Action of a and b on W .

2.2. Positive words and XY words. Now suppose w is a positive word (i.e., containing
only positive powers of a and b), and r = p1/q1, s = p2/q2 are rational and expressed in
reduced form. Theorem 1.1 says that R(w; p1/q1, p2/q2) is rational, with denominator
no bigger than min(q1, q2). Following [4], we present the Calegari–Walker algorithm
to compute R(w; p1/q1, p2/q2). The main idea is that since the rotation number
essentially encodes the cyclic combinatorial order of the orbits in the circle, we can find
R(w; p1/q1, p2/q2) using purely combinatorial methods.

Definition 2.1. (XY -word) An XY -word of type (q1, q2) is a cyclic word in the 2-letter
alphabet X, Y of length q1 + q2, with a total of q1 Xs and q2 Y s.

If W is an XY -word of type (q1, q2), we let W∞ denote the bi-infinite string obtained
by concatenating W an infinite number of times, and think of this bi-infinite word as a
function from Z to {X, Y }: we denote the image of i ∈ Z under this function by Wi , so that
each Wi is an X or a Y , and Wi+q1+q2 =Wi for any i .

We define an action of the semigroup generated by a and b on Z, associated to the
word W (see Figure 2). The action is given as follows. For each integer i , we define
a(i)= j where j is the least index such that the sequence Wi , Wi+1, . . . , W j contains
exactly p1 + 1 Xs. Similarly, b(i)= j where j is the least index such that the sequence
Wi , Wi+1, . . . , W j contains exactly p2 + 1 Y s. Note that this means Wa(i) is always an X
and Wb(i) is always Y , respectively. We can then define

rot∼W (w)= lim
n→∞

wn(1)
n · (q1 + q2)

.

PROPOSITION 2.2. (Calegari–Walker formula) With notation as above, there is a formula

R(w; p1/q1, p2/q2)=max
W
{rot∼W (w)},

where the maximum is taken over the finite set of XY -words W of type (q1, q2).

Evidently, each rot∼W (w) is rational, with denominator less than or equal to min(q1, q2),
proving the first part of Theorem 1.1. Although theoretically interesting, a serious practical
drawback of this proposition is that the number of XY -words of type (q1, q2) grows
exponentially in the qi .

2.3. Stairstep algorithm. In this subsection we discuss the stairstep algorithm, found in
[4], in more detail and in the context of this paper.

THEOREM 2.3. [4, Theorem 3.11] Let w be a positive word, and suppose p/q and c/d
are rational numbers so that c/d is a value of R(w; p/q, ·). Then

u := inf{t : R(w; p/q, t)= c/d}

is rational, and R(w; p/q, u)= c/d.
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X X X X

FIGURE 3. The XY word of type (q, v).

The theorem is proved by giving an algorithm (the stairstep algorithm) to compute u
and analyzing its properties. Note that the fringe length frw(p/q) is the value of 1− u
where u is the output of the stairstep algorithm for c/d = ha(w)p/q + hb(w). Observe
that, whereas Theorem 1.2 proved the existence of a fringe length, this theorem proves
that the length is in fact a rational number. We now explain this algorithm.

Proof. Since R is monotone non-decreasing in both of its arguments, it suffices to prove
that

inf{t : R(w; p/q, t)≥ c/d} (1)

is rational, and the infimum is achieved. Also, since R is locally constant from the right
at rational points, it suffices to compute the infimum over rational t . So consider some
t = u/v (in lowest terms) such that R(w; p/q, u/v)≥ c/d . In fact, let W be a XY word
of type (q, v) for which R(w; p/q, u/v)= rot∼W (w). After some cyclic permutation, we
can write

W = Y t1 XY t2 XY t3 X · · · Y tq X,

where ti ≥ 0 and
∑q

i=1 ti = v. Our goal is to then minimize u/v over all such possible
XY -words W .

After some circular permutation (which does not affect R), we may also assume without
loss of generality that w is of the form

w = bβn aαn · · · bβ2aα2bβ1aα1 ,

where αi , βi > 0. Also, assume that equality is achieved in (1) for u/v (i.e., R(w; p/q, t)
= c/d). Thus, by construction, the action ofw on W , defined via its action on Z, is periodic
with a period d , and a typical periodic orbit begins at W1 = Y .

We fix some notation and try to analyze the action of each maximal string of a or b in
w on W by inspecting its action on Z. Note that, for

s̃i = aαi bβi−1aαi−1 · · · bβ1aα1(1),

the s̃i th letter in W∞ is always X . Let si be the index modulo q so that W∞s̃i
is the si th X

in W (see Figure 3). Thus, for a periodic orbit starting at W1 = Y , the string bβi is applied
to the si th X .

Then, by definition, bβi (s̃i ) is the least number such that the sequence Ws̃i ,

Ws̃i+1, . . . , Wbβi (s̃i )
contains exactly uβi + 1 Y s. Let li denote the number of Xs in

the sequence Ws̃i (= X), Ws̃i+1, . . . , Wbβi (s̃i )
(= Y ) (see Figure 4). Thus li is the smallest

number such that

tsi+1 + tsi+2 + · · · + tsi+li+1 ≥ uβi + 1. (2)
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X X X

Total no. of Y is

FIGURE 4. Action of bβi .

In other words, li is the biggest number such that

tsi+1 + tsi+2 + · · · + tsi+li ≤ uβi . (3)

The purpose of rewriting this inequality was to make it homogeneous. Even if equality
does not occur in (1), the inequality in (2) still holds true. The only difference is that li
does not necessarily have to be the smallest number; however, it does have to satisfy other
constraints which we now describe.

We write wd as
wd
= bβk aαk bβk−1aαk−1 · · · bβ1aα1

and instead of considering the action of w on W with a period d, assume that wd acts on
W c by its action on Z. Then the maximal a-strings and b-strings in wd all together cover
exactly the total number of Xs (and Y s) in W c. For a similar reason, we know that intervals
of the form of (W j , Waαi ( j)) enclose precisely pαi + 1 Xs. Thus we get the equality

k∑
i=1

(li + (αi p + 1))= cq.

Note that here the αi are periodic as a function of i , with a period k/d = n but, in general,
the li are not periodic in i . We can also give a formula for si by counting the number of Xs
covered.

si =

i∑
j=1

(α j p + 1)+
i−1∑
j=1

l j .

Thus, we have formulated our minimization problem as a homogeneous linear integral
equation subject to a finite number of integral linear constraints. Because of homogeneity,
it has a solution in integers if and only if it has a solution in rational numbers and,
consequently, we can normalize the whole problem by rescaling to v = 1. Our algorithm
is then as follows.
Step 1. Replacing w by a cyclic permutation if necessary, write wd in the form wd

=

bβk aαk · · · bβ1aα1 .
Step 2. Enumerate all non-negative integral solutions to

k∑
i=1

li = cq −
k∑

i=1

(αi p + 1).
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Step 3. For each such solution set (l1, . . . , lk), define

si =

i∑
j=1

(α j p + 1)+
i−1∑
j=1

l j .

Step 4. Find the smallest u which satisfies the system of inequalities

q∑
i=1

ti = 1,

ti ≥ 0 for all i,

tsi+1 + tsi+2 + · · · + tsi+li ≤ uβi for all 1≤ i ≤ k (indices taken mod q).

Step 5. Find the smallest u over all solution sets (l1, . . . , lk).
The solution to this algorithm is necessarily rational and gives the minimal t such that

R(w; p/q, t)≥ c/d . Also, if equality is achieved, then clearly R(w; p/q, u)= c/d, and
thus the theorem is proved. �

3. A formula for fringe lengths
In this section we will apply the stairstep algorithm to the computation of fringe lengths.
The key idea is that in this special case, the equation

k∑
i=1

li = cq −
k∑

i=1

(αi p + 1)

has a unique non-negative integral solution. This, in turn, reduces the last step of the
algorithm to the solution of a single linear programming problem, rather than a system
of many (exponentially increasing in number) inequalities.

3.1. Proof of fringe formula 1.3. We now begin the proof of the fringe formula. This
takes several steps and requires a careful analysis of the stairstep algorithm. We therefore
adhere to the notation in §2.3. After cyclically permuting w, if necessary, we write w in
the form

w = bβn aαn · · · bβ1aα1 .

3.1.1. Finding the optimal partition. First, note that by Theorem 1.2, it is enough to
find the minimum t such that

R(w; p/q, t)=
ha p + hbq

q
.

Thus, to apply the stairstep algorithm (2.3), we are going to fix c/d = (ha p + hbq)/q
where c/d is the reduced form. Let us denote the gcd of ha and q by g so that we have

c =
ha p + hbq

g
and d =

q
g
,

since (p, q)= 1. Further, using ha = h′g and q = q ′g, we rewrite the above equations as

c = h′ p + hbq ′ and d = q ′.
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Thus, step 1 of our algorithm becomes

wq ′
= bβnq′aαnq′ · · · bβ1aα1 ,

where clearly αi , βi are periodic as functions of i with period n.
Similarly, step 2 of our algorithm transforms to

l1 + · · · + lq ′·n =
ha · p + hb · q

g︸ ︷︷ ︸
=c

· q − q ′ · ha︸ ︷︷ ︸
=
∑nq′

i=1 αi

· p − q ′ · n,

i.e.,

l1 + · · · + lnq ′ = hb · qq ′ − nq ′ (4)

and the equations in step 4 to find the minimum solution u, become

q∑
i=1

ti = 1, (5)

ti ≥ 0 for all i, (6)

tsi+1 + tsi+2 + · · · + tsi+li ≤ βi u for all 1≤ i ≤ nq ′, (7)

where indices are taken (mod q). Now if any of the li is greater than or equal to qβi , then
the indices on the left-hand side of equation (7) cycle through all of 1 through q a total of
βi times. Then using (5), we get that

βi = βi

q∑
1

ti ≤ tsi+1 + tsi+2 + · · · + tsi+li ≤ βi u,

implying u ≥ 1, which is clearly not the optimal solution. Hence, for the minimal solution
u, we must have

li ≤ qβi − 1 for all 1≤ i ≤ nq ′.

Summing up all of these inequalities, we get that

nq ′∑
i=1

li ≤ q
nq ′∑
i=1

βi − nq ′ = qq ′hb − nq ′.

But, on the other hand, by step 2, equality is indeed achieved in the inequality above and
hence

li = qβi − 1 for all 1≤ i ≤ nq ′ (8)

is the unique non-negative integral solution to the partition problem in step 2. As mentioned
before, this means that from now on we only need to deal with a single linear programming
problem, which is formulated more precisely in the next section.
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3.1.2. A linear programming problem. With the specific values of li found above, we
can transform equations (5)–(7) as follows. Note that for li = qβi − 1, the set of indices
si + 1, si + 2, . . . , si + li cycle through all of the values 1, 2, . . . , q a total of βi times,
except one of them, namely si (mod q), which appears βi − 1 times. Then we can rewrite
(7) as

βi

( q∑
j=1

t j

)
− tsi ≤ βi u for all 1≤ i ≤ nq ′,

i.e.,
tsi

βi
≥ 1− u for all 1≤ i ≤ nq ′.

Observe that in the above equation, the βi are periodic with a period n whereas the si

are well defined modulo q (since the ti have period q), which is usually much bigger than
n. Then for the purpose of finding a value of u which satisfies the system of equations (5)–
(7), it will be enough to consider the indices i for which βi is maximum for the same value
of si .

To make the statement more precise, we introduce the following notation. Let the set of
indices 3 be defined by

3=

{
i
∣∣∣∣ βi = max

s j=si
1≤ j≤nq ′

β j

}
.

Then the first thing to note is that the set of numbers {si }i∈3 are all distinct. Next, recall
that we are in fact trying to find the fringe length, which is 1− t , where t is the solution to
the stairstep algorithm. So, with a simple change of variable, our algorithm becomes the
following linear programming problem:

Find maximum of min
i∈3

{
1
βi

tsi

}
,

subject to
∑
i∈3

tsi ≤ 1, tsi ≥ 0 for all i.

But since we are trying to find the maximum, we may as well assume that
∑

i∈3 tsi = 1
and tk = 0 if k 6= si for some i ∈3. Then, by a theorem of Kaplan [9], we get that the
optimal solution occurs when for all i ∈3, the number tsi /βi equals some constant T
independent of i . To find T , observe that

tsi

βi
= T ⇒

∑
i∈3

βi T = 1⇒ T =
1∑

i∈3 βi
.

Thus the optimal solution to the linear programming problem, which is also the required
fringe length, is given by

frw(p/q)=
1∑

i∈3 βi
. (9)

So all that remains is to figure out what the set of indices 3 looks like. In the rest of this
section we try to characterize 3 and prove the fringe formula 1.3.
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3.1.3. Reduction to combinatorics. It is clear from the definition that to figure out the
set 3 we need to find out exactly when two of the si are equal as i ranges from 1 to nq ′.
Recall that the indices si are taken modulo q . Using the optimal partition, we get that

si + li =
i∑

j=1

(pα j + 1+ qβ j − 1)

and hence

sI = sJ ⇔

I∑
j=1

α j ≡

J∑
j=1

α j (mod q),

since lI ≡ lJ (mod q). Thus the elements of 3 are in bijective correspondence with the
number of residue classes modulo q in the following set of numbers.

A1 = α1

A2 = α1 + α2

A3 = α1 + α2 + α3

A4 = α1 + α2 + α3 + α4
...

Anq ′ = α1 + α2 + α3 + · · · + αnq ′ .

So we can rewrite the formula for the set 3 as

3=

{
i
∣∣∣∣ βi = max

A j≡Ai (mod q)
1≤ j≤nq ′

β j

}
.

Note that An = ha and the αi are periodic with period n. So we have, An+i = Ai + ha

or, in other words, the collection of numbers A1, A2, . . . , Anq ′ is nothing but a union of
disjoint translates of the collection (A1, A2, . . . , An) by 0, ha, 2ha, . . . , (q ′ − 1)ha .

Let us refer to the n-tuple (A1, A2, . . . , An) as the first ‘n-block’. Similarly, the ha-
translate of the first n-block is referred to as the second n-block, and so on. Note that
q ′ha = h′q, so the q ′ha-translate of the first n-block is identical to itself modulo q. Hence
we may think of translation by (q ′ − 1)ha as translation by −ha .

Next, we claim that

CLAIM. The numbers 0, ha, 2ha, . . . , (q ′ − 1)ha are all distinct modulo q.

Proof. If q divides the difference between any two such numbers, say mha , then q ′ |
mh′⇒ q ′ | m⇒ m ≥ q ′, which is a contradiction. �

In fact since h′ is invertible modulo q, the set of numbers {0, ha, . . . , (q ′ − 1)ha} is the
same as {0, g, 2g, . . . , (q ′ − 1)g} modulo q . Thus, to determine the congruence classes
in the collection A1, A2, . . . , Anq ′ , it is enough to find out which n-blocks overlap with
the first n-block. Note that translating an n-block by ha(= h′g) takes it off itself entirely,
so the only translates of an n-block that could overlap with itself are the translates by ig
for |i |< h′ (see Figure 5).
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FIGURE 5. Translates of the first n-block.

Finally, observe that if we start with the the n-block given by (A1 + g, A2 +

g, . . . , An + g) instead, we get overlaps at the same multiple of g as the first n-block;
but translated by g. Thus, starting from A1, if we divide the residue class of q into a total
of q ′ number of g-sized groups, then each βi appears the same number of times in each
group and the overlaps appear at the same places translated by multiples of g. Hence to
calculate the sum of max{βi } over all residue classes, it is enough to calculate it for the
residue classes which appear among A1, A1 + 1, A1 + 2, . . . , up to A1 + (g − 1) and
then multiply the result by q ′.

Let us summarize the results we have found so far in the form of an algorithm.
Step 1. Write down A1, A2, . . . , An where Ai = α1 + · · · + αi .
Step 2. For each 0≤ i ≤ g − 1, let Bi be defined as

Bi =max{βk+mg | Ak+mg ≡ A1 + i(mod q) where −h′ < m < h′, 1≤ k ≤ n}.

Note that in the case q ′ < h′, we replace h′ with q ′ in the above definition.
Step 3. Let S be the sum of the Bi for 0≤ i ≤ g − 1. Then the fringe length is given by

frw(p/q)=
1

q ′S
. (10)

To finish the proof, define σw(g) := S/g and note that by the structure of the algorithm,
σw(g) depends only on g = gcd(q, ha) and the word w. As a corollary, we also get the
following remarkable consequence.

COROLLARY 3.1. The fringe length does not depend on p.

That is, the fringes are ‘periodic’ on every scale. In §5 we elaborate on this phenomenon
in a particular example, and discuss possible generalizations.
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4. Examples and special cases
In this section, we give some examples to illustrate the complexity of the function σ in
general, and in the special case that ha(w) is prime. Let us first prove the following.

THEOREM 4.1. (σ -inequality) Suppose w = aα1bβ1aα2bβ2 · · · aαn bβn . Then the function
σw(g) satisfies the inequality

hb

ha
≤ σw(g)≤ max

1≤i≤n
βi ,

where the first equality is achieved in the case when ha divides q and the second equality
occurs when (q, ha)= 1.

Proof. For the first inequality, recall the numbers A1, A2, . . . , Anq ′ from last section.
Note that the fact that ha · q ′ = h′ · q tells us that there are at most h′ elements in each
residue class modulo q among A1, . . . , Anq ′ . Thus

nq ′∑
i=1

tsi ≤ h′ ·
∑
i∈3

tsi ≤ h′ ·
q∑

i=1

ti = h′.

On the other hand, adding all the nq ′ inequalities in (7), and using li = qβi − 1, we get
that

u ·
nq ′∑
i=1

βi ≥

nq ′∑
i=1

(
βi

q∑
j=1

t j − tsi

)
=

nq ′∑
i=1

βi −

nq ′∑
i=1

tsi ≥

nq ′∑
i=1

βi − h′

and u ≥ 1−
h′

hb · q ′
= 1−

ha

hbq
.

Hence, for the minimal u giving the fringe length we get that

σw(g)≥
hb

ha
.

For the second inequality, observe that, by definition,

frw(p/q)=
1

σw(g)q
=

1∑
i∈3 βi

≥
1

|3| ·maxi∈3 βi
≥

1
q ·maxi∈3 βi

,

since the number of elements in 3 is at most the number of residue classes modulo q.
Hence

σw(g)≤max
i∈3

βi ≤ max
1≤i≤n

βi .

We will finish the proof by showing that equality is indeed achieved in the following special
cases.

Case 1: ha | q. In this case h′ = 1. Hence all the si are distinct.
Consider the specific example where tsi = βi/(hbq ′) for all i and the rest of the ti are

zero. Then we have

βi · u ≥
∑
j 6=i

β j

hbq ′
· βi +

βi

hbq ′
· (βi − 1)= βi ·

hbq ′

hbq ′
−

βi

hbq ′
⇒ u ≥ 1−

1
hbq ′

.

So the minimum u0 which gives a solution to (5)–(7) is 1− 1/(q ′hb)= 1− ha/(hbq).
Thus equality is achieved in the first part of Theorem 1.4.
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We can give a second proof of this same fact using the algorithm developed in the last
section. Since ha | q, the gcd of ha and q is ha . So any g-translate of the n-block is disjoint
from itself. Hence S = hb, giving the same formula as above.

Case 2: gcd(ha, q)= 1. In this situation, g = 1. Hence c = ha · p + hb · q and d = q ,
since q = q ′.

Let W = Y t1 XY t2 · · · Y tq X as in the proof of Theorem 2.3. Since w now has a periodic
orbit of period exactly q , we get that any b-string starting on adjacent X must land in
adjacent Y ∗ strings. Thus the constraints of the linear programming problem are invariant
under permutation of the variable ti , and by convexity, extrema are achieved when all the
ti are equal. But then we get

q · ti = 1⇒ ti =
1
q

and
βi u ≥ li · ti =

(qβi − 1)
q

⇒ u ≥ 1−
1

qβi
for all 1≤ i ≤ nq.

Hence the minimum u which gives a solution to the system of equation is given by

u = 1−
1

q ·max1≤i≤n{βi }
.

Observing that equality is indeed achieved in case of the word (XY max{βi })q , we get
equality in the second part of Theorem 1.4.

Again, we can give a much simpler proof of this result using the algorithm in the last
section. In this case, we have g = 1 so that q = q ′. So S is the maximum of all the βi which
correspond to any Ai that is a translate of A1 by one of −ha,−ha + 1, . . . , 0, . . . , ha −

1, ha (i.e., all of the Ai ). Thus S = σw(g)=max1≤i≤n{βi }, since g = 1. �

COROLLARY 4.2. If ha is a prime number then

frw(p/q)=


ha

q · hb
if ha | q,

1
q ·max1≤i≤n βi

if ha - q.

Remark 4.3. The function σw(g) depends on g = gcd(ha, q) in a complicated way when
ha is not prime, as we can see from Table 1.

Example 4.4. Let us consider the case of the word w = abaab. By Corollary 4.2, the left
fringe lengths are given by

frw(p/q)=


3

2q
when 3 | q,

1
q

when 3 - q,
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FIGURE 6. Plot of the fringes of abaab, q = 1 to 100.

TABLE 1. Values of σw(g) for different w and g.

Word p/q = 1/5 p/q = 1/2 p/q = 1/3 p/q = 1/6
ha = 6 hb g = 1 g = 2 g = 3 g = 6

aaabaaabbbb 5 4 5/2 4/3 5/6
abaabaaabbbb 6 4 5/2 5/3 1
abbaabaaabbbb 7 4 3 2 7/6
abbbaabaaabbbb 8 4 7/2 4/3 7/3
abbbababaaabbbb 9 4 7/2 8/3 3/2
abbbaabbaaabbbb 9 4 7/3 7/3 3/2
abbbababbaaabbbb 10 4 7/2 8/3 5/3

and the right fringe lengths are given by

frw(p/q)=


2

3q
when q is even,

1
2q

when q is odd.

The cases when 3 - q and 2 - q were also discussed in [4, p. 18].

We finish this section by giving a fringe plot for both sides for the word w = abaab.
Let us put the origin at the point (r = 1, s = 1) and the point (r = 0, s = 0) be depicted as
(1, 1). Then we have Figure 6.
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FIGURE 7. Plot of left Fringe, q = 1 to 100.

5. Projective self similarity
In her paper, Gordenko shows that the the Ziggurat of the word w = ab is self-similar
under two projective transformation [7, Theorem 4]. In this section we show that similar
transformations exist in case of the word w = abaab, which gives a different way of
looking at the fringe formula.

First, let us look at the self-similarities of the left fringe. Figure 7 shows a plot of
the fringe lengths where the x-axis is the value of rot∼(a) and the y-axis is value of
frabaab(x). Thus for x = p/q we have frabaab(x) defined as in Example (4.4). We will
drop the subscript abaab for the next part.

We prove that the unit interval can be decomposed into some finite number of intervals
1i such that there exists a further decomposition of each 1i into a disjoint union of
subintervals Ii, j with the graph of fr(x) on each of Ii, j being similar to that on some
1k(i, j) under projective linear transformations.

THEOREM 5.1. Let 11 = (0, 1/3), 12 = (1/3, 1/2), 13 = (1/2, 2/3) and 14 =

(2/3, 1). Then we have the following decomposition into Ii, j and transformations
Ti, j .

I1,1 = (0, 1/4), T1,1(I1,1)=11 ∪12 ∪13 ∪14 = [0, 1],

T1,1(x, y)=
(

x
1− 3x

,
y

1− 3x

)
,

I1,2 = (1/4, 1/3), T1,2(I1,2)=11,

T1,2(x, y)=
(

4x − 1
9x − 2

,
y

9x − 2

)
,

I2,1 = (1/3, 1/2), T2,1(I2,1)=11,

T2,1(x, y)=
(

1− 2x
2− 3x

,
y

2− 3x

)
.



756 S. Chowdhury

FIGURE 8. Intervals of projective self-similarity in case of w = abaab.

Since the graph is clearly symmetric about x = 1/2, similar decomposition exists for 13

and 14 (see Figure 8).

Proof. For each of the transformations, note that the denominator of the image of p/q
has the same greatest common divisor, ha , as q. Also, in each case, the numerator and
denominator are coprime. The proof then follows easily by checking the length of images
in each case. �

We thus note that 11 contains all the information necessary to determine the fringe
dynamics. In fact, for ha prime the following similarity result always holds.

THEOREM 5.2. Let11 = (0, 1/ha) where ha is a prime number. Then we can decompose
11 into Ii, j and find transformations Ti, j as follows.

I1,1 = (0, 1/(ha + 1)), T1,1(I1,1)= [0, 1],

T1,1(x, y)=
(

x
1− ha x

,
y

1− ha x

)
,

I1,2 = (1/(ha + 1), 1/ha), T1,2(I1,2)=11,

T1,2(x, y)=
(
(ha + 1)x − 1

h2
a x − (ha − 1)

,
y

h2
a x − (ha − 1)

)
.

It is also easy to prove, in the case of prime ha , that the plot on 1= [(ha − 1)/2ha,
1
2 ]

is similar to 11 under the transformation

T (x, y)=
(

2− 4x
(ha + 1)− 2ha x

,
2y

(ha + 1)− 2ha x

)
.

Note that, in the case of ha = 3, we have (ha − 1)/2ha = 1/ha , which explains
Theorem 5.1.
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