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A TOPOLOGICAL PROOF THAT O2 IS 2-MCFL

SUBHADIP CHOWDHURY

Abstract. We give a new proof of Salvati’s theorem that the group language
O2 is 2 multiple context free. Unlike Salvati’s proof, our arguments do not
use any idea specific to two-dimensions. This raises the possibility that the
argument might generalize to On.
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1. Introduction

In a recent paper[3], Sylvain Salvati proved that the language

O2 = {w ∈ {a, b, A,B}∗ | |w|a = |w|A ∧ |w|b = |w|B}

and hence the rationally equivalent language

MIX = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c}

are 2−Multiple Context Free Languages as follows. Consider the grammar

G = (Ω,A, R, S)

where Ω = ({S; Inv}, ρ) with ρ(S) = 1 and ρ(Inv) = 2; A = {a,A, b, B} and R
consists of the following rules:

(1) S(x1x2)← Inv(x1, x2)
(2) Inv(t1, t2)← Inv(x1, x2) where t1t2 ∈ perm(x1x2aA) ∪ perm(x1x2bB)
(3) Inv(t1, t2)← Inv(x1, x2), Inv(y1, y2) where t1t2 ∈ perm(x1x2y1y2)
(4) Inv(ǫ, ǫ)

Note that by construction it is easy to prove that the language L = {w |
S(w) is derivable in G} generated by G, is a subset of O2. Using ideas specific to
two-dimensional geometry, e.g. complex exponential function, Salvati then proves
that

Theorem 4.2 (Salvati). If w1w2 ∈ O2, then Inv(w1, w2) is derivable and hence
w1w2 will be in the language L = {w|S(w) is derivable in G} generated by G.
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2 SUBHADIP CHOWDHURY

Theorem 4.2 along with the previous description of the grammar G thus proves
that L = O2. In this paper, we give a different proof of the same theorem using
ideas from homology theory that are not specific to two dimensions. This raises the
possibility that the proof might be generalized to higher dimensional cases, thus
shedding light on the (still open) question whether On is a n−MCFL.

2. Acknowledgement

I would like to thank Danny Calegari, my advisor, for sharing with me Salvati’s
paper [3] which directly inspired the main result of this paper; and for his continued
support and guidance, as well as for the extensive comments and corrections on this
paper. I would also like to thank Mark-Jan Nederhof for sharing his paper [2] and
other related works to this problem and Greg Kobele for some useful discussion and
comments.

3. A generalization of Salvati’s Theorem in 2−dimension

A word in O2 corresponds uniquely to a closed path in the integer lattice Z2 as
follows. a and b correspond to → and ↑, and A,B to ← and ↓ respectively. e.g.
the word abbAbaBaBBBAbA ∈ O2 corresponds to the path in figure 1.

(0, 0)

Figure 1. Lattice path corresponding to the word abbAbaBaBBBAbA

We prove a purely topological result about closed curves on the plane (not nec-
essarily simple) which, as a corollary, gives us theorem 4.2.

Consider a closed (oriented) loop K in R2 given by

ϕ : S1 → R2, Image(ϕ) =: K

It makes no difference to set the domain of ϕ equal to [0, 1] and assume ϕ(0) =
ϕ(1). Let p = ϕ(0), q = ϕ(1/2) and let r and s be two arbitrary points on K.
Together the four points {p, q, r, s} break up K into 4 (possibly degenerate) arcs
K1,K2,K3 and K4 such that the starting point of Ki+1 is the same as the ending
point of Ki. Denote by ~vi the vector which is defined as

~vi = End point of Ki − Starting point of Ki

The vectors ~vi satisfy

~v1 + ~v2 + ~v3 + ~v4 = 0

Our main technical result is the following.
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Proposition 3.1. Assume that ϕ is differentiable at p and q and ϕ′(0) is not
antiparallel to ϕ′(1/2). Then there exists a pair of r and s on K different from
{p, q} such that the set of 4 vectors {~v1, ~v2, ~v3, ~v4} can be partitioned into two sets
of 2 vectors each of which sum up to zero.

The proof of Proposition 3.1 proceeds in multiple steps as follows. First we
construct a 2 dimensional cell complex X that parametrizes the choices for r and
s along with a choice of partition for {~v1, ~v2, ~v3, ~v4}. Then we define a function
f : X → R2 with the property that a zero for f gives a choice of {r, s} satisfying
the conclusion of proposition 3.1. Finally using a homological argument, we show
that f must have a zero.

Before moving on with the proof we make the following observations to simplify
the proof. We claim that it suffices consider embedded K. Suppose the loop K has
at least one self intersection i.e. it’s not embedded. Then there exist two points
0 ≤ t1 < t2 ≤ 1 such that ϕ(t1) = ϕ(t2). Now depending on values of ti, we must
have one of the following cases (recall that p and q are distinct):

(1) t1 = 0 and 0 < t2 < 1/2
Then we remove ϕ(0, t2) of K to get a new knot K ′. Clearly if K ′

satisfies the conclusion of proposition 3.1 then so does K. So we replace K
with this new simplified knot K ′.

(2) t1 = 0 and 1/2 < t2 < 1
In this case we remove ϕ(t2, 1) instead.

(3) t2 = 1/2 and 0 < t1 < 1/2 OR t1 = 1/2 and 1/2 < t2 < 1
Similar to the above two cases.

(4) 0 < t1 < t2 < 1/2 OR 1/2 < t1 < t2 < 1
Remove ϕ(t1, t2).

(5) 0 < t1 < 1/2 < t2 < 1
Then choose r = ϕ(t1) and s = ϕ(t2) so that ~v1 + ~v4 = ~v2 + ~v3 = 0.

In conclusion, after necessary simplifications, without loss of generality we can
assume that K is an embedded loop in R2.

3.1. Construction of the 2 dimensional Cell Complex X and the
function f . In this section, we define the 2-complex X whose points parametrizes
choices of {r, s} 6= {p, q} on K along with the particular choice of partition of
{~v1, ~v2, ~v3, ~v4} into two sets of 2 vectors each. Note that the choice of partition
also defines the function f on X , but this is a bit complicated since it depends on
the relative orders of {p, q, r, s} on K. Now choosing r and s on K is equivalent to
choosing two numbers x and y in the interval [0, 1], where 0 and 1 are considered
the same number. In what follows, we list all the possible 2-cells in X in table 1;
along with the 1-cells and 0-cells that appear as the boundary of the 2-cells and
parametrize the cases when our choice is degenerate. This will take up next couple
of pages. However, note that for our subsequent sections and to prove the main
result, we will be using only some of these cells.

The 2-cells fall into three categories:

Case 1. 0 ≤ x ≤ 1/2 ≤ y ≤ 1
Case 2. 0 ≤ x ≤ y ≤ 1/2
Case 3. 1/2 ≤ x ≤ y ≤ 1

In each case, we define f in such a way that f(x, y) = 0 implies existence of a
partition of {~v1, ~v2, ~v3, ~v4} into two sets of two vectors each of which add up to zero.
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Observe that if (p, r, s, q) appear in that particular order in K and ~v2 = s− r = 0
(which is equivalent to saying ~v1+~v3+~v4 = 0), then that means part ofK from ϕ(x)
to ϕ(y) makes a loop. But since we assumed K is embedded, those combination of
vector(s) are never zero for any choice of x and y in case 2. So we can safely add
the cells F and H in X . Similarly, when p, q, r, s appear in that particular order in
K we can consider the extra 2-cells J and L.

Table 1. The list of 2-cells

Name picture of the cell
f(x, y) on the

cell
Name picture of the cell

f(x, y) on the
cell

2-cells

A
p q

s

r
ϕ(x) − ϕ(0) +

ϕ(y)−
ϕ(1/2) =

r − p+ s− q

B
p q

s

r
ϕ(1/2)−

ϕ(x) + ϕ(y)−
ϕ(1/2) =

q − r + s− q

C
p q

s

r
ϕ(1/2)−

ϕ(x) + ϕ(1)−
ϕ(y) =

q − r + p− s

D
p q

s

r

ϕ(x) − ϕ(0) +
ϕ(1)− ϕ(y) =
r − p+ p− s

E
p q

r s
ϕ(x) − ϕ(0) +

ϕ(1/2)−
ϕ(y) =

r − p+ q − s

F q

r s

p ϕ(y)−ϕ(x) =
s− r

G
q

r

p

s
ϕ(y)− ϕ(x) +

ϕ(1)−
ϕ(1/2) =

s− r + p− q

H
q

r s

p

ϕ(1/2)−
ϕ(y) + ϕ(1)−

ϕ(1/2) +
ϕ(x)−ϕ(0) =
ϕ(x)−ϕ(y) =
r − p+ q −
s+ p− q

I
p q

s r

ϕ(x) −
ϕ(1/2) +

ϕ(1)− ϕ(y) =
p− s+ r − q

J
p q

s r

ϕ(y)−ϕ(x) =
s− r

K
p q

s r

ϕ(y)− ϕ(x) +
ϕ(1/2)−
ϕ(0) =

q − p+ s− r

L
p q

s r

ϕ(x)−ϕ(y) =
q − p+ r −
q + p− s

1-cells

α
p q = s

r

ϕ(x)−ϕ(0) =
r − p

β
p = s q

r

ϕ(1/2)−
ϕ(x) = q − r
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Table 1. (continued)

Name picture of the cell
f(x, y) on the

cell
Name picture of the cell

f(x, y) on the
cell

γ
p = r q

s

ϕ(y)−
ϕ(1/2) = s−q

δ
p q = r

s

ϕ(1)− ϕ(y) =
p− s

α
q

r

p = s ϕ(0)−ϕ(x) =
p− r

β
q = s

r

p ϕ(x) −
ϕ(1/2) = r−q

γ
p q = r

s

ϕ(1/2)−
ϕ(y) = q − s

δ
p = r q

s

ϕ(y)− ϕ(1) =
s− p

0-cells

p1 p = r q = s 0 p2
p q = r = s

ϕ(1/2)−
ϕ(0) = q − p

p3
qp = r = s ϕ(1)−

ϕ(1/2) = p−q
p4

q = rp = s
0

Before writing down the boundary maps, we make a final observation. In the cells
E,F,G, and H , the domain of f is as in figure 2 and the function f is constant on
the hypotenuse {x = y} of the underlying triangle. Hence for the purpose of writing

X

Y x
=
y

Figure 2. Solution space for case 2
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down the boundary map, we can replace the cells with homeomorphic bigons whose
boundary is given by 1−cells corresponding to the sides {x = 0} and {y = 1/2} of
the initial triangles (and the third side is contracted to a point) [cf. figure 3].

Figure 3. Homeomorphic solution space for case 2

By abuse of notation, we will denote these homeomorphic 2-cells by the same
name. By symmetry, same thing is true for the four cells I, J,K, and L. Then the
boundary maps on the 2-cells are defined as follows.

∂(A) = β − α− δ + γ ∂(B) = α− β − γ + δ

∂(C) = β − α− δ + γ ∂(D) = α− β − γ + δ

∂(E) = α+ β ∂(F ) = β + α ∂(G) = α+ β ∂(H) = β + α

∂(I) = γ + δ ∂(J) = δ + γ ∂(K) = γ + δ ∂(L) = δ + γ

And finally the boundary maps from 1−cells to 0−cells are given by

∂(α) = p2 − p1 ∂(β) = p1 − p2 ∂(γ) = p3 − p1 ∂(δ) = p1 − p3

∂(α) = p3 − p4 ∂(β) = p4 − p3 ∂(γ) = p2 − p4 ∂(δ) = p4 − p2

Refer to figure 4 to see how all the cells glue together with correct orientation.

3.2. Taking out some of the vertices of X to get a homologically
trivial 2-cycle. So far we have constructed a 2−dimensional complex, let’s call
it X , with four 0−cells, eight 1−cells and twelve 2−cells. We can picture X as in
figure 4.

In last section, we defined a continuous vector-valued function from X to R2.
Note that f(p1) and f(p4) are zero, however they correspond to the degenerate
case when {p, q} = {r, s}. So to prove proposition 3.1, we need to show that f has
a nontrivial zero on X other than p1 and p4.

Let us assume, for the sake of contradiction, that f is nonzero everywhere else on
X . We remove two circular ǫ-neighborhoods of p1 and p4 from X and compactify
(in the obvious way) the resulting space to get a new cell complex Y. Clearly we
have

∂Y = Lk(p1,X ) ∪ Lk(p4,Y)

where Lk(p1,X ) is the link of p1 in X . Now f |Y is nonzero and so we can replace
f by f/‖f‖, which by abuse of notation, we will still call f , to get a continuous
function defined as

f : Y → S1.
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α β γδ

β̄
ᾱ

δ̄
γ̄

Figure 4. All cells with orientation

Then we have a commutative diagram

∂Y Y

S1

i

i◦f
f

which induces following commutative diagram on the homology of these spaces

H1(∂Y) H1(Y)

H1(S
1) = Z

Our goal is to show existence of cycles in H1(∂Y) that are homologcally trivial
in H1(Y) but map nontrivially to H1(S

1). [For a short introduction to the theory
of homology, the reader may refer to chapter 2 of [1].]

Recall that Lk(p1,X ) (and similarly Lk(p4,X )) is a graph whose vertices corre-
spond to the 1−cells of X which are incident to p1 (resp. p4). Two such edges are
adjacent in Lk(p1,X ) (resp. Lk(p4,X )) if they are incident to a common 2−cell at
p1 (resp. p4). From the list of cells above we can then easily see that both the links
have has 4 vertices and 8 edges (and the two graphs are disjoint from each other).

Now consider the cycle in Lk(p1,X ) that consists of the 1−cell (edge in the graph)
corresponding to E minus the 1−cell corresponding to F . Since the 2−cells clearly
bound a sphere in X , this cycle as an element of H1(Y) bounds a disk, and hence
is homologically trivial. We will call this the αβ−cycle because of the boundary of
the 2−cells. Similarly we can construct γδ−, αβ− and γδ−cycle in H1(∂Y) which
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map homologically trivially into H1(Y). In general we can produce such a cycle
whenever a collection of 2−cells of X makes a sphere.

3.3. Calculating degree of f on cycles of ∂Y. We first concentrate on the
ǫ−neighbourhood, let’s call it U , of the point p1 in X that was used to obtained
Lk(p1,X ) as ∂U . Similarly, we deonte the corresponding neighbourhood at p4 by
V . We want to choose U and V sufficiently small such that the following is true.

Suppose U ∩α = [0, a] and U ∩ δ = [d, 1]. We want the vectors ~uα = ϕ(a)−ϕ(0)
and ~uδ = ϕ(1)− ϕ(d) approximately of same magnitude and in the same direction
(note that ϕ(0) = ϕ(1)). Similarly if U ∩ β = [x, 1/2] and U ∩ γ = [1/2, c], then
we want ~uβ = ϕ(1/2)− ϕ(b) and ~uγ = ϕ(c)− ϕ(1/2) to be of approximately same
magnitude and direction. Now f is differentiable in a neighbourhood of p1 since
ϕ is differentiable at p and q. So such a choice of U exists. Note that we can
simultaneously choose V small enough such that the following are also satisfied.

~uα ≈ ~uδ, ~uβ ≈ ~uγ

and

~uα = −~uα, ~uβ = −~uβ, ~uγ = −~uγ and ~uδ = −~uδ.

Let θ denote the angle from the vectors ~uα to ~uβ and θ′ denote the angle from
the vectors ~uγ to ~uδ (in clockwise direction, wlog). Since ~uα ≈ ~uδ and ~uβ ≈ ~uγ ,
one of the two angles θ and θ′ is less than or equal to π. Without loss of generality
let us assume that θ < π. Then we know that the angle from ~uδ to ~uγ is also less
than π.

Observe that the vectors uα and uβ are essentially the direction of tangents to
the knot K at 0 and 1/2. Consequently since K is embedded, up to homotopy, the
part of ϕ from 0 to 1/2 looks like one of the following 3 possibilities in figure 5.

(a) Case 1 (b) Case 2 (c) Case 3

Figure 5. 3 Homotopy cases for part of K from 0 to 1/2

Let pα, pβ, pγ and pδ denote the vertices in Lk(p1,X ) corresponding to the 1−cells
α, β, γ and δ respectively (cf. figure 6).

We introduce the notation [pα → pβ] to denote the edge in from pα to pβ in
Lk(p1,X ) corresponding to the 2−cell F (the orientation is derived from X and
the fact that E − F is a sphere). Similarly we define [pβ → pα] to denote the edge
corresponding to E. Thus the αβ−cycle is equal to [pα → pβ ] + [pβ → pα].

We wish to calculate the degree of of f |αβ−cycle. Depending on the 3 cases for
the embedding of ϕ|[0,1/2] as discussed above, we will get different results.

Let’s look at f |[pβ→pα] first. Note that for small enough U i.e for x → 0+ and
y → 1/2−, the function f on [pβ → pα] is approximately a linear interpolation
from f(pβ) = ~uβ to f(pα) = ~uα and hence the image of f traverses the circle from
the direction of ~uβ to that of ~uα (cf. figure 7).
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pα

pβ pδ

pγ

α

β δ

γ

p1

Figure 6. The link (dotted part) of the vertex p1 in X

Figure 7. Image of f on [pβ → pα]

The case of [pα → pβ ] is very different because of the the corresponding 2−cell
F . Note that by construction, a small neighbourhood of p1 in F looks like

{(x, y) | y − x ≤ ǫ} ⊂ {0 ≤ x < y ≤ 1/2}

for some small ǫ > 0 so that ϕ(y) − ϕ(x) ≈ 0. So, as we traverse [pα → pβ], the
function f maps continuously from ϕ(ǫ) − ϕ(0) to ϕ(1/2) − ϕ(1/2 − ǫ) through
vectors of the form ϕ(x + ǫ) − ϕ(x) with x going from 0 to 1/2 − ǫ. Thus the
winding number of image of f on [pα → pβ] depends on the embedding of ϕ from
0 to 1/2. Looking at the 3 possible cases as in figure 5, we then observe that the
image of f looks as in figure 8. Consequently the degree of f on the αβ−cycle can
be tabulated as in table 2.

(a) Case 1 (b) Case 2 (c) Case 3

Figure 8. Image of f in the 3 cases

In the case when the degree of f on the αβ−cycle is zero, we look at the possi-
bilities for the part of the knot ϕ from 1/2 to 1. Again up to homotopy, there are
exactly 2 possible cases as in figure 9. In each case, let’s calculate the degree of f
on the γδ−cycle which depends on the embedding of ϕ from 1/2 to 1. Then it is
easy to see that in both cases, f |γδ−cycle is non zero.
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Case 1 Case 2 Case 3

Degree of f on αβ−cycle  0 � 0 = 0

Table 2

(a) Case 1 (b) Case 2

Figure 9. 2 Homotopy cases for part of K from 1/2 to 1 for case
3 in figure 5

3.4. Conclusion. The proof of proposition 3.1 now follows from the following
contradiction. Since the αβ−cycle and the γδ−cycle are homologically trivial in Y,
the composition

H1(∂Y) →֒ H1(W )→ H1(S
1)

is a zero map. But on the other hand at least one of these cycle maps with nonzero
degree to S1 and hence maps nontrivially in homology. Thus our assumption in
subsection 3.3 is wrong and f indeed must have a nontrivial zero other than p1 and
p4. �

4. Proof of Salvati’s Theorem

Following Salvati, we first prove the following corollary to proposition 3.1 which
after a easy induction argument will prove theorem 4.2.

Theorem 4.1. Let w1, w2 ∈ {a, b, A,B}
∗ such that w1w2 ∈ O2. Then there exists

x1, x2, y1, y2 ∈ {a, b, A,B}
∗ such that

(1) w1w2 ∈ perm(x1x2y1y2),
(2) max{|x1x2|, |y1y2|} < |w1w2|,
(3) w1w2 ∈ perm{x1x2y1y2}, and
(4) x1x2 and y1y2 are both in O2.

Proof. We consider the set of all possible choices of x1, x2, y1, and y2 which satisfy
condition (1), (2), and (3) from above. Let’s call this set S. It is easy to see that
S is nonempty and finite. We want to show that at least one of these choices will
also satisfy condition (4).

Recall that each word in O2 and in general any word in a, b, A,B corresponds to
a path in the integer lattice in R2. By abuse of notation, we will denote the path
corresponding to w by w as well. Then let ~v(w) be the vector in R2 which goes
from the starting point of w to the end point of w. We will use the notation (a, b)
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to mean the point or the vector 〈a, b〉 = aî + bĵ interchangeably and the meaning
should be clear from the context. Thus,

~v(w) = |w|a〈1, 0〉+ |w|b〈0, 1〉+ |w|A〈−1, 0〉+ |w|B〈0,−1〉

We will say a point (a, b) is an lattice point if both a, b ∈ Z. Similarly we say a

vector ~v is an lattice vector if both its î component and ĵ components are integer.
Thus the vector (a, b) is an lattice vector if it is an lattice point.

For each choice in S, we observe that for (x1, x2, y1, y2) in S to satisfy (4) is
equivalent to having ~v(x1) + ~v(x2) equal to the zero vector i.e. the origin. Note
that by construction, the image under P always gives an lattice vector.

We would like to apply proposition 3.1 to the closed lattice path corresponding
to w = w1w2, where the two fixed points p and q are the starting point of w1 (i.e.
the ending point of w2 and also, the origin) and the starting point of w2 (which is
also the ending point of w1). Unfortunately, the closed lattice path is clearly not
differentiable at those two points. We circumvent this problem in the following
way.

Firstly note that if either the starting or ending letter in w1 is inverse of either
the starting or ending letter in w2, then we can easily find x1, x2x3, x4 as above
For example if w1 = aw′

1b and w2 = bw′
2A, then x1 = a, x2 = A, x3 = w′

1b, and
x4 = bw′

2 will work. So we might as well assume that w1 and w2 do not have
compatible letters at the starting or ending. This takes care of the condition that
the tangents at p and q are not antiprallel.

Let’s write w1 = s1w
′
1s2 and w2 = s3w

′
2s4, where si ∈ {a, b, A,B} is a letter.

Here we are assuming |w1|, |w2| ≥ 2 since otherwise the proof is trivial. Now let’s
say s1 = a. Then none of s2, s3, and s4 can be A. Also b and B both can not be
in the set {s2, s3, s4}. So we also assume {s2, s3, s4} = {a, b}. The other cases are
similar. Now the two possibilities for s4s1, i.e. the two letters around the point p
are aa or ab. For each of those possibilities s2s3, the two letter aroud q can be one
of the four

ab, aa, bb, ba

Figure 10. ‘Smooth’ening the path at p and q
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For any of the above 8 possibilities, we replace the lattice path corresponding to
ab and ba (only at p or q) by a smooth circular arc as in figure 10, so that smooth
path still passes through the lattice points but none of the other points in the arc
is an lattice point. If either of s4s1 and s2s3 is aa or bb then we leave it as it is.
Thus we have changed our closed lattice path corresponding to w into another loop
which is differentiable at p and q, and so we can now apply prop 3.1.

The proposition then gives us the existence of two points r and s which in turns
gives us four vectors ~v1, ~v2, ~v3, and ~v4, two of which add up to 0. It is easy to see
that if r and s is actually an lattice point, then all four of these vectors are lattice
vectors and we can easily use ~v1, ~v2, ~v3, ~v4 suitably to get a choice of (x1, x2, y1, y2)
in S which satisfies (4).

Figure 11. r or s cannot lie in the replaced part

Another interesting observation is that r and s cannot lie in the part of the
lattice path we replaced in the previous paragraph to ‘smooth’en the loop at p and
q. Because otherwise the vectors ~v1, ~v2, ~v3, ~v4 would all lie in the same quadrant
and cannot sum up to 0. (cf figure 11). So all we need to prove is that we can
find points r and s satisfying proposition 3.1 which do no lie in the middle of a
horizontal (corresponding to a or A) or a vertical (corresponding to b or B) segment
in the modified closed lattice path.

Contrary to what we have to prove, suppose all choices of r and s satisfying the
conclusion of proposition 3.1 have at least one of them a non-lattice point. We can
assume wlog that r (resp. s) lies in the path corresponding to w1(resp. w2). All
the other possibilities can be dealt with very similar and easy arguments.

In the first case, for some choice of r and s as above, suppose r in an lattice
point and s lies in the interior of a segment. Since p and q are lattice points by our
construction, ~v1 and ~v2 are lattice vectors but ~v3 and ~v4 are not. Then the partition
mentioned in proposition 3.1 must be {~v1, ~v2} and {~v3, ~v4} because otherwise they
don’t add up to 0(which is an lattice vector). But then we might as well choose
s to coincide with q and then both r and s become lattice points and still satisfy
prop 3.1. Contradiction.

Next suppose both r and s are not lattice points. Again if our choice for partition
is {~v1, ~v2} and {~v3, ~v4} then we can replace r and s with p and q respectively and
be done. Suppose r lies in the middle of a horizontal segment corresponding to a.
Then the only way either ~v1 + ~v3 = 0 or ~v1 + ~v4 = 0 is if s also lies in the middle
of a horizontal segment, since otherwise ~v1 + ~v3(or ~v1 + ~v4) can not be an lattice
point. Moreover, r and s both must divide the segments they belong to in equal
or opposite ratios. Then we suitably replace r and s by the starting or end point
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of the segments they are in, since doing so adds and subtracts same vector and so
the sum remains unchanged (stil equal to zero). This gives us a choice of lattice
points r and s which also satisfy the conclusion of prop. 3.1. Contradiction.

Thus either way we can always find lattice points r and s and consequently a
choice of (x1, x2, y1, y2) ∈ S satisfying (4) in theorem 4.1.

�

Theorem 4.2. If w1w2 ∈ O2, then Inv(w1, w2) is derivable and hence w1w2 will
be in the language L = {w|S(w) is derivable in G} generated by G.

Proof. We prove the theorem by inducting on the size of the word w1w2. The base
cases are trivial and follow from the rules in G. Theorem 4.1 and the third rule in
G forms the induction step. �

5. The case of 3 dimension and higher

We would like to generalize above proof to the case of O3 and conjecture the
following.

Conjecture 5.1. O3 is a 3−MCFL and is generated by the following grammar.
Consider

G = (Ω,A, R, S)

where Ω = ({S; Circ}, ρ) with ρ(S) = 1 and ρ(Circ) = 3; A = {a,A, b, B, c, C} and
R is made of rules that have one of the following forms:

(1) S(x1x2x3)← Circ(x1, x2, x3)
(2) Circ(t1, t2, t3)← Circ(x1, x2, x3)

where t1t2t3 ∈ perm(x1x2x3aA) ∪ perm(x1x2x3bB) ∪ perm(x1x2x3cC)
(3) Circ(t1, t2, t3)← Circ(x1, x2, x3),Circ(y1, y2, y3)

where t1t2t3 ∈ perm(x1x2x3y1y2y3)
(4) Circ(ǫ, ǫ, ǫ)

Computer experiments suggest that this is indeed true in the cases where the
word length of some w ∈ O3 is small enough. Note that the main ingredient of the
proof in previous section is homology and degree theory which have direct analogues
in case of 3 dimension and higher. As such there is an obvious algorithm to proceed
with in those cases. However, it turns out that it’s hard to come up with 3−cells
corresponding to the 2−cells F and J in 3 dimension and unfortunately without
those, all the relevant 2−cycles are null homologous. Nonetheless, we can make
some interesting observations which might prove helpful.

Remark 5.2. Given t1t2t3 ∈ O3, computer experiments suggest that it is always
possible to choose x1, x2, x3, y1, y2, and y3 in such a way that t1t2t3 = x1y1x2y2x3y3
and x1x2x3, y1y2y3 ∈ O3; i.e. it is possible to break the word t1t2t3 into six sub-
words such that the two sets of three alternate subwords together make two words
of O3. This dramatically cuts down the number of cells we need to consider for
finding a relevant 2−cycle.

Remark 5.3. Given t1t2t3 ∈ O3, computer experiments suggest that it is always
possible to choose x1, x2, x3, y1, y2, and y3 in such a way that t1t2t3 = x1y1x2y2x3y3
and x1x2x3, y1y2y3 ∈ O3; i.e. it is possible to break the word t1t2t3 into six sub-
words such that the two sets of three alternate subwords together make two words
of O3. This dramatically cuts down the number of cells we need to consider for
finding a relevant 2−cycle.
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